
SOFTWARE MODELING STUDIES EXECUTIVE SW4HARYaUI
JUL 81M L SNOONAN. N RUSTON F30602-78-C-0057

UNCLASSIFIED POLY!EEIO0 6 RADC-TR-81-183..yOL-1 NL7A-I581 YECHI IS FlNWhOKhROKYNDPTOhhhhl-ECF/ /2

-~ -~~~~~~1
I

p

~A.

a

-

'It

F
'I

4

.4

4

t

.-Ok

$ UNCLASSIFIED

(11 REPORT DOCUMENTATION PAGE BFRE COMPLETIN OR

(I RADC R-81-183.Vol.l of-fetar) O12D- 0-

3 EXECUTIVE UMMARYV

7. AUHQA(A__ 6 CONT ,)PANT MUMUERmi).

- ERFORMING ORGANIZATION NAME AND ADDRESS iC. RORA EEMENT. PROJECT. TASKC

Poltehnc nsitteofNe Yrk61102F jJc

1I. CONTROLLING OFFICE NAME AND ADDRESS -SOTOT

Same 5.S. ODECL ASSI FICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Stock 20, it differt froin Report)

Same

f. 16. SUPPLEMENTARY NO0TES

RADC Project Engineer: Rocco F. Iuorno (ISIE)

It. KCEY WORDS (Co.rntu ort rvers side it necesarand Identify by block nuinber)
Software Engineering Software Management Models
Software Reliability Models
Test Models

Polytechnic Institute of New York in the area of complexity measures, test

this volume research described in previous progress reports, technical
reports and in Volumes II, III and IV is summarized. Unfinished work, not
previously reported, is described. Significant results are highlighted

DD 'jAN7m3 1473 EDITION OP I NO0V 6515S OBSOLETE UNNSSFE

SSECURITY CLASSIFICATION OF THIS PAGE (When ams, afeoroo

I ~ (UNCLASSIFIED
Secu AllY CLASSIPICATION OF TWOS5 PAGgt(Uef Dole Cntermd

with their interrelation and potentia.,

tA

T7D

UNLSSFE

- sZU~jVCLSAPIAT106 F -- PCI~hba fnfmg

- j. "L

FINAL REPORT

SOFTWARE MODELING STUDIES

TABLE OF CONTENTS

PAGE

1.0 Summary and Results 1
1.1 Objective 1
1.2 Organization 1
1.3 Principal Results 1
1.4 Dissemination of Results 4

1.5 Major Accomplishments 4

2.0 Introduction and Overview 5
2.1 State of the Art in Software Models 5
2.2 Need for Modeling Research 6

3.0 Applications of the Research to Software Engineering 7
3.1 Design Phase 7
3.2 Testing and Debugging Phase 7
3.3 Operational Phase 7

4.0 Complexity Measures 8

5.0 Test Models and Techniques 9

6.0 Program Methodology for Low Error Content 10

7.0 Software Reliability Models 10

8.0 Software Management Models 11
8.1 Introduction 11

8.2 Software Engineering Management 12
8.3 Management Policy and Organizational

structure 12
8.4 Productivity Models 17
8.5 Quantitative Graph Model 18
8.6 Graph Model Parameters 20
8.7 Refinement of the Parameters 21
8.8 Capacity Constraints 22

9.0 Other Research in Progress 24 K
9.1 Introduction 24
9.2 Psychological Complexity 24
9.3 The Information Theory Approach to Complexity 25
9.4 The Polynomial Measure of Complexity 25
9.5 Application of Theory of Hardware Complexity

to Software Complexity 25

fi

*

* ,, -..---* " ,T " - " ,-

TABLE OF CONTENTS (Cont'd)

PAGE

9.6 Software Reliability Data Analysis and Model
Fitting - A Case History 25

9.7 Application of Shooman's Exponential
Model to Field Data 40

9.8 Further Results on the Applications of Zipf's Law 40
9.8.1 Introduction 40
9.8.2 Zipf's Length Formula 41
9.8.3 Estimation of Token Length at the

Beginning of Design 41
9.8.4 Relationship to Software Science 42
9.8.5 Halstead's Length Formula 43
9.8.6 Comparison of Halstead and Zipf

Lengths 43
9.8.7 An Alternating Operator - Operand

Model 44
9.8.8 Deriviation of Zipf's Length Equation

From the Model 44
9.8.9 Derivation of Halstead's Length Equa-

tion From the Model 46
9.8.10 Information Content of a Program 47
9.8.11 Correlation Between the Proposed

Metric's and Experience 49
9.8.12 Use of Akiuama's Data for Correlating

Errors and Complexity Measures 51
9.8.13 Correlation of Hypotheses with Data 56
9.8.14 Summary and Conclusions 56

9.9 Cost Estimation 56
9.10 Programming Methods for Low-Error Content 59
9.11 Testing 59

10.0 References 60

11.0 Professional Activities 64
11.1 Papers 64
11.2 Reports 65
11.3 Symposia and Workshops 66
11.4 Talks and Seminars 66
11.5 Books 68
11.6 Technical Committees 68
11.7 Professional Awards 69

12.0 Personnel and Work Areas 69

iii
H

... -~~ 7 -;..

LIST OF FIGURES

Figure Title Page

1. Relationship Among Management Philosophy, Policy,
and Organizational Structure 13

2. Six Organization Entities 1.5

3. Project Organization 1.6

4. Functional Organization 16

5. Matrix Organization 16

6. Quantitative Graph Model 1.9

7. Decomposition of a Problem P into Three
Subproblems 20

8. Transmission-Caused Degradation of Software
Engineering Management Information 22

9. Increase in Software MTBF During Field Trials 32

10. Decrease in Error Discovery Rate During Field Trials 33

11. Cumulative Number of Errors Found During
Field Trials 34

12. Least Squares Fits of Table 2 39
Data to Eq. 9.10
(a) Assumption 1
(b) Assumption 2
(c) Assumption 3

13. Number of Bugs vs. Number of Machine Language
Statements 52

14. Number of Bugs vs. Information Content in Bits 53

15. Number of Bugs vs. Halstead Effort-E 54

16. Number of Bugs vs. Akiyama's Measure 55

ii

i , ~. _i

LIST OF TABLES

Table Title Page

1. Error Occurrence During the Field Trial Period 29

2. Reliability Computations 20

3. Determination of Model Parameters Using Eqs. 9.8
and 9.9 and the Data 37

4. Comparison of the Various Reliability Estimates 37

5. Comparison of Equivalent Terms 42

6. Raw Data From Akiyama ([51]) 50

7. Information Derived from Akiyama's Data 50

8. Least Squares Fit of a Straight Line for the
Four Hypotheses 57

9. Comparison of Proportionality Constants 58

iv

AK,

1.0 Summary and Results

1. 1 Objective

This report documents the research performed under Contract No.
F30602-78-C-0057 by the Polytechnic Institute of New York for Rome Air
Development Center during the period January 1, 1978 to December 31, 1979.
Research described in previous progress and technical reports, and in the
appended three technical reports is summarized. Unfinished research not
pr4viously reported is described. The significant results are highlighted
with their interrelations and potential.

1.2 Organization

This final report is composed of four volumes; the present report
is labeled Volume I and contains a summary of the work performed in the
two-year span of the contract. Volumes 2, 3, and 4 are technical reports
and are entitled, "The Polypomial Measure of Complexity," "Experimental
Study of Two-Dimensional Language vs Fortran fo)7 First-Course Program-
mers," "A Statistical Theory of Computer Program Testing," respectively.

The technical contents are organized into five major subdivisions,
Chapters 4.0, 5.0, 6.0, 7.0, and 8.0. Chapter 1.0 and the following two
chapters provide a summary, an introduction and discussion of the research
performed.

Chapler 4.0 contains a technical summary of the research on complexity
measures. Similarly, test models and techniques are described in Chapter
5.0, and program methods for low error content in Chapter 6.0. Chapter 7
gives a view to the work on 'software reliability models. Chapter 8 describes
software management models. Chapter 9 contains brief descriptions of newly
initiated and continuing efforts.

Chapter 10.0 lists the relevant references for this document. Chapter
11.0 contains the complete titles of papers, reports, symposia, talks, books
related to the work under this contract. Chapter 12.0 gives the names of the
researchers supported in part by this contract.

1.3 Principal Results

The major thrust of the work is divisible into five areas: complex-
ity measures, test models and techniques, methods for developing programs -

with low error content, software reliability models, and software management
models.

Complexity Measures

The approach to complexity measures has followed four avenues:

(1) An extensive study was made of recursive functions and their role
for modeling program complexity. The results (reported in SMART 108-C

Z4{

POLY EE/EP 77-037) show that despite considerable theoretical promise,
recursive functions can only be applied to a narrow range of problems, and
that with considerable difficulty. A component of the study, (reported in
Sections 4.3 and 4.4 of the referenced report) involved the application of
recursive functions to character strings. This work extended recursive
function formalization (which is ciassically applied to integers), to the eval-

* uation of character string elements. Ten operations on character strings are
developed in the report. These allow an analytical description of nearly all
important character string manipulations. This work should prove of value
to researchers studying the properties of and operations on character string
variables.

(2) A new complexity measure incorporating the program control
structure was devised. This measure, named the polynomial complexity
measure, allows the comparison of alternate designs and tells how to divide a
program into modules for a minimal overall complexity. A technical report
describing this measure forms volume 2 of this report.

(3) The research was continued on application of Zipf's law to program
complexity. This work (initially reported in RADC-TR-4, Vol II, April 1978)
provided a measure of program length from operator and operand counts.
The present work expands on this theme. The previous effort measured just
the bulk of a program, the newest effort takes the information content (i.e.,
the entrophy and thus the actual complexity, into account.

One difficulty in estimating the information content of messages - or in
present context of programs - is that many probabilities are needed and yet
the sample from which they are estimated is usually very small. Conse-
quently, the present work is largely devoted to techniques and experiments
in estimating entropies from small samples, that is, from small programs or
from small sections of programs.

If the estimated entropy really corresponds to information content, one
may expect the program to be invariant to translations such as assembly or
compiling or writing it in a different style. Some success has been achieved
along these lines, although an information measure simple enough to be of
practical use cannot completely separate the "meaningful" information from
the redundancies and "noise" code.

(4) An installation dependent, information theory based measure has
been advanced. This measure has a number of desirable features:

It includes all elements of a program, that may produce an
error, even a simple assignment statement.

* It is more sensitive to infrequently used language features
(and thus more error causing) than the commonly used ones.
It weights heavier an element used in a complex manner than
in a simpler manner. For example, a nested loop is perceived
to be more complex than a sequence of two simple loops. Few
of the existing measures have adequately addressed this
situation.

* It allows for automated techniques in its calculation.

2

T'it Models and Techniques

The research on test models and techniques consisted of three thrusts
described below:

1. The first thrst was directed to the various aspects of verifying
that a computer program correctly carries out the specified functions. The
results (reported in RADC-TR-78-119, November 1978) allow one to determine
the number of tests necessary to verify a program.

2. The second thrust was aimed at an actual implementation of an
automatic software driver. In the classification of tests by types, type 1
test is one in which all flow chart paths are force-traversed at least once.
Similarly, in a type 2 test, all flowchart paths are naturally-traversed at
least once. The implemented driver is of type "1.5," that is one in which
all paths are force-traversed, and some paths are naturally-traversed. The
force-traversal is achieved by an algorithm for path analysis (that is, an
algorithm for finding all possible paths) and the subsequent forcing of all
deciders into accepting all their possible states with the resulting execution
of all the paths.

This work (reported in RADC-TR-80-45) is a practical approach to
testing, bypassing the much more difficult problem of input test data
selection for the execution of all program paths.

3. The third thrust focused on statistical testing, constituting the
volume 4 of this report. The application of this approach leads in some
cases to an optimum testing strategy which minimizes the probability of
failure.

Methods for Developing Programs with Low Error Content

The research on development of methuds for designing programs with
low error content focussed on obtaining quantitative comparison of program-
mer's peformance with two very different programming languages. One
language was FORTRAN, and the other was the Klerer- May two-dimensional
language. Programming in the two-dimensional language follows the familiar
mathematical form and this minimizes the learning time (which consisted in
fact of a single one-hour lecture) and requires a low degree of mathematical
literacy. The results of the comparison indica.ve that even after a brief
exposure, a programmer may construct an error-free Klerer-May two climen-
sional program in which less time than in FORTRAN. The obtained data
shows the programming time rate of FORTRAN vs. Klerer-May as ranging
from 1.76 to 7.1 for the performed experiments. A technical report de-
scribing this work constitutes volume 3 of this final report.

Software Reliability Models

The work on software reliability models concentrated on three areas:

(1) The analysis of software data and subsequent determination of

- I 3 i . V II

macro-model [1] parameters, specifically the ET (i.e, the total number of

errors in the program at the start of integration testing) and the K (i.e.,
constant of proportionality, relating the software failure to the number of
remaining errors) parameters.

The estimation derived is a major improvement over the previous one.
The old method involved moment or maximum likelihood estimation. An under-
standing of this method required a knowledge of statistics. The new method
requires least-square-error fitting, which is simpler and allows graphical
interpretation of changes in model parameters.

(2) In many practical situations the required data for performing
software reliability estimates is incomplete. A method has been developed
which provides bounds on the parameter estimates by imposing optimistic and
pessimistic assumptions on the reconstruction of the missing data.

(3) A comparative study was made of the correlation between E and a
number of problem complexity measures. Specifically, the measures cdmpared
were (1) expected instruction length of the resulting program, (2) operator
and operand counts, (3) information content [2), (4) Halstead's effort
measure [31, and (5) Akiyama's decision and call statement counts [4]. The
highest correlation was achieved with Halstead's effort measure (with
Akiyama's measure being a close second).

Software Management Models

The effort on software management models focused on two approaches.
The first approach was applied to modeling of the development time and is
described in (5]. The second approach studied the organization of a
programming project and its effect on productivity. The initial ideas of the
second approach were described in [5], and will be further detailed in
Section 8.0.

1.4 Dissemination of Results

The results of the described research has been disseminated
through the following channels

Published Reports : 8
Published or Submitted Papers 15
Talks and Seminars . 46
Books : 4
Prizes & Awards : 2
Organization of Conferences

and Workshops : 1
A These are detailed in Section 11.0.

1.5 Major Accomplishments

Section 1.3 summarizes the principal results obtained. The majorJaccomplishments were:

I4*1• "__ __

1. Halstead's pioneering work on software science was a major
contribution to the field. Many investigators, however, have questioned the
results because of the heuristic approaches in developing the key formulas.
We have provided a basic theoretical frame work allowing one to derive
Halstead's and additional formulas from fundamental principles involving
Zipf's law, Shannon's theory of information and probabilistic models for
program generation.

2. The major tool for removing errors and increasing reliability
of software is program testing. The selection of test data to provide ade-
quate coverage and exercise of the software under development is the major
outstanding unsolved problem. The automatic test driver represents a
significant contribution to testing. During the contract period previous
experiments with drivers have matured into a practical implementation. Our
driver, specifically, tests PL/I programs, and can be extended to other
languages (such as, Pascal, Ada, JOVIAL, and so on).

3. A statistical theory of computer program testing has been
developed. Even the most cautious and skilled tester will make mistakes of
omission and commission. The theory incorporates the tester's performance
by modeling the probability of his failing to recognize an erroneous result.
The major result also accounts for the practical cases when (a) an input
excites one or more errors or (b) one error requires multiple inputs for its
discovery, and (c) when an input uncovers no errors.

4. A new measure of complexity has been developed. This
measure, named the polynomial measure of complexity, takes the program
structure into account. The measure models complexity by a polynomial
rather than by a single number (as the popular cyclomatic measure does, for
example). The measure addresses itself to (and solves) the important
problem of the optimal decomposition of a program into modules, which
minimize the overall complexity.

2.0 Introduction and Overview

2.1 State of the Art in Software Models

The last decade has brought about major progress in the field of
software development. In :ssence this development has been transformed
from individual art into a disciplined scientific approach. A large measure of
the progress is attributable to the advances in software models and
measures.

Reliability

There are nowadays several known and accepted measures of software
reliability. These are Shooman's [61 exponential model, Jelinski-Moranda
exponential model[7], Musa's time-history model[81, Littlewood's Bayesian
model[91, Lipow's regression model [101, Shooman's-Natarajan error
generation model[IlJ, as well as Shooman's micro-model[12] (the last two
models were developed with the support of RADC).

5

I!

The above models as well as several others have been compared by
several investigators. The most significant comparisons are the ones by A.
Sukert [13], L. Duvall [14], and A. Schaeffer [15].

* Availability

An availability model was developed for RADC by M.L. Shooman and A.
Trivedi [16]. This approach uses a discrete-state continuous time Markov
chain to model whether or not the software is in the up (i.e., operable) or
the down (i.e., not operable) state.

Complexity

The difficult and important problem of assessing the complexity of a
program has been investigated by many workers. A comprehensive summary
of the work up to the close of 1979 was given by L. Belady [17] and B.
Curtis [18,19].

RADC has supported the development of two significant complexity
measures: the Zipf's law [201 and the polynomial measures [211. Other
important complexity measures were developed in the pioneering work on
software science by the late Maurice Halstead [221.

Testing

The testing process has been modeled in the past by relatively few
workers: Lipow [231, Mohanty [24], and Miller [25). More recent work
(supported by RADC) is the one by Popkin and Shooman [261, and Laemmel
[27].

Management

It has been recognized for some time that management and organization
structure of the project team play a vital role in the resulting quality, cost
and schedule of software development. Brooks' book [281, which is based
on the experiences encountered during the development of OS/360, focuses
on these organizational problems. Unfortunately, the analytical work in this
important areas is in its infancy. Recently models have been introduced
(Tausworthe [29], Shooman [30], Cormier [311) to describe the effects of
the interactions of programmers with the organizational structure. The
latter two models were developed with the support of RADC.

2.2 Need for Modeling Research

In an ideal situation ample proven models will exist for all aspects
of program development, and these will be universally used by the practi-
tioners in the field to predict and manage software project. In reality we
have a Babel of models, ranging from excellent to useless, used by only a
handful of practitioners. Most practitioners are reluctant to try the models
because they are not convinced of their value. Researches point to several
cases where the models have been validated, and cry for usage by and feed-

6

_______,___,$

back from the practitioners, essential for further improvement. Thus, we
have a vicious cycle which must be broken by cooperative researchers-
practitioners ventures. A small step in this direction was undertaken under
this contract through the vehicle of a major workshop in this area f32,33].

3.0 Applications of the Research to Software Engineering

3.1 Design Phase

An initial step in any design is to assess its scope, so as to
marshall adequate resources for fulfilling the design objective. A rough
approach is to compare the design with similar systems in the past and draw
the conclusions. Such a comparison is inaccurate at best, and of little value
in a typical military environment where each new task is much more
demanding than its predecessor.

This contract supported work on complexity measures useful for gauging
the difficulty of a design. One of these, the so-called "Zipf's law" measure
extended the work begun under the previous contract to incorporate the
actual entropy, that is, the information content, of the program into account.

The second measure, "polynomial complexity," incorporates the informa-
tion of program structure as well as the extent of required testing. This
measure recognizes the fact that the expected testing is a significant factor
in the complexity of the design.

The contract also supported continued work on reliability models. It is
as important to use such models in early as it is in later on operations.
Shooman's macro-model predicts very early the expected number of errors
and the duration of the integration test phase to meet a prescribed reliability
requirement.

3.2 Testing and Debugging Phase

The research performed under the contract contributes to the
testing and debugging phase with the work on: calculation of the number of
tests for adequate verification of a program [261, automatic testing [34], and
statistical testing [27].

The automatic testing technique focussed on the construction of a test
driver. The driver forces the traversal through all the paths of the pro-
gram by manipulating the conditions in the deciders. The statistical testing
views the testing process as an incomplete one, and leads to cases for which
an optimum testing strategy can be evolved and which minimizes the K
probability of failure.

3.3 Operational Phase

*The macro-model described in the design phase is equally useful
for the operational phase. Specifically, this model predicts the number of
residual errors and thus tells whether or not the software is reliable enough
to be released into field operations.

7

. ..F L_ n_-

, g,

The work on the two-dimensional language [35] can be viewed as a

contribution to the operational phase. The simplicity of the language and
the high correlation with familiar expressions used in mathematics make it
very attractive for maintenance. The details on this language are given in
volume 3 of this report.

4.0 Complexity Measures

It is a fact of life that the estimation of important factors in software
development leaves a lot to be desired. Underestimates by factors of two or
of even ten in cost, manpower, computer time, development time and
reliability, are commonplace. The villain is the elusive complexity, perceived
by everyone, but in an ambiguous and fuzzy manner.

The earliest measure counted the lines of code, that is, the program
bulk. A later popular measure, the cyclomatic measure, just counted the
number of deciders, recognizing that deciders make a major contribution to
program complexity.

The research under this contract attacked the complexity problem from
several fronts. The output of this research are two completed studies,
reported in technical reports, and two studies requiring a little more work

before their culmination in technical reports.

The first attack focused on recursive functions and their application to
program complexity. It has been conjectured for years that recursive
functions should play a major role in describing a problem or even program
complexity. The result of the study revealed the difficulty of applying
recursive functions to practical problems, generally not limited to integer
operations. Even though some progress was made in extending recursive
functions to the domain of character 'strings, the conclusion is that we have
to look somewhere else for practical tools for gaging complexity. For details
we refer to the report [36].

The second completed study is named "The Polynomial Measure of
Complexity," and constitutes volume 2 of this report. This study addressed
itself to the fact that deciders and their structure are the main contributors
to complexity. The role played by deciders has been recognized by McCabe
[371 in his development of the cyclomatic measure. McCabe, however, just
counts the deciders (for programs with no separate parts), ignoring the
properties arising from their interconnections. One of these properties is
the number of path tests necessary for a program of n deciders. For the

minimal interconnection, it is just n+, for the maximum connection it is 2
and for a third it may be any number between these two extremes. Clearly,
the number of tests is a major cost factor requiring much effort, and is thus
a major contributor to the program difficulty, that is, complexity.

To incorporate the structure of a program a description more general
than just a number is needed. It is shown in the report that a polynomial
describes a flowchart fully and uniquely, thus leading to the polynomial

8

.,
.i

~-.,. .

measure. This measure is then applied to the key problem of optimal decom-
position, that is, the decomposition of a program into modules whose overall
complexity is minimal.

The two studies in progress are both directed toward exploitation of
information theory in measuring program complexity. The first study ex-
pands the Zipf's Law measure from just measuring the program length to
measuring the actual information content, that is, the program entropy. It
does so by sampling small program segments and calculating eutropy from
actual frequencies of commands in several languages. Present work experi-
mented with English, IBM/370 assembler, PDP-11 assembler and PL/I to
obtain a feel for the problem, and the underlying language redundancies.
The object of immediate research is to estimate the entropy from a sample
whose length will ordinarily be too small, because in a typical short program
there is rarely a sufficient number of small occurrences to perform the
calculations adequately. The methoci used is the "jack-knife" one. This
method consists of subdividing the sample into finer and finer divisions
(each division being a power of 2) thus generating a small enough sample
and then taking the limit as the sample length approaches infinity. The
details are left to a future technical report.

The complexity measure of the second study in progress has several
goals. As a first goal it is based on all elements of the program; it recog-
nizes that everything can produce an error, even a simple assignment or
move instruction.

As the second goal, it wants the measure to be more sensitive to infre-
quently used language elements than to the commonly used ones. This
aspect recognizes the intuitive reality that one does more accurately that
what one does frequently.

The third goal is to model the measure so that an element used in a
complex manner contributes more to the complexity than the same element
used in a simpler manner. For example, a nested loop is intuitively more
complex than a sequence of two simple loops. None of the measures
advanced so far have adequately addressed this situation.

The final goal is the allowance for automating of the calculation. This
is essential, because this measure is a rather extensive one, thus making a
hand calculation completely unattractive.

5.0 Test Models and Techniques

The important topic of test models and techniques has not received as
yet the attention it deserves in the published literature for a simple reason:
it is a very difficult nut to crack. We have completed three studies (and
published the technical reports), two of which are continuing.

The first study [261 considered the problem of determination of the
number of tests needed to test a program. For details, the reader is
referred to the published technical report.

9

L

i l

t

The second study considered the construction of an automatic test
driver [341. This driver forces all deciders into their all possible states,
and thus provides a traversal through all possible paths. Again, the details
are given in the published report.

The third study culminated in a statistical theory of program testing. It
addresses itself to the problem of developing an optimum test strategy in the
light of the fact that the test, even if passed, is a partial one at best.
Again, the details appear in the published report [27].

The first and the second studies are continuing. In the continuation of
the first study, the object is to obtain an improved bound on the numoer of
tests, and to do so with less computational effort. In particular, the ways
of decomposing a flowchart are investigated with the goal of finding the best
method of decomposition (best, in the sense of leading to the most accurate
bound from the bounds of the individual partitions).

The continuation of the second study addresses itself to the development
of a more general driver, and with fewer flaws. The present driver tests
even paths that could never be reached by natural execution, thus creating
error messages for non-existent errors. To remove this flaw we need a
driver of higher type (higher than type 1), because unreachable paths
cannot be determined by a static analysis. Another restriction is that in the
present driver certain legal PL/I constructs (e.g., multiple closures) cannot
be handled. Also, if further support for this work is made available we will
write a test driver for programs written in Ada.

6.0 Program Methology for Low Error Content

Because of the difficulty in producing software with low error content,
we constantly look for a better mousetrap, that is, for a better language or
method that will avoid or reduce the errors inherent in released programs.

We reported earlier [38] on the work on automatic programming. This
work was dormant during the two year span of the present contract.
Instead, the approach was to investigate the merits of a language closely
following the familiar format. The experiments with such a language, the
Klerer-May two-dimensional language, and FORTRAN were undertaken. The
details of the experiment, as well as the results obtained are reported in
volume 3 of this report.

7.0 Software Reliability Models

The principal thrust of the present effort was directed toward making
the model useful for the practitioner in the field rather than just for the
researcher. The macro model [1] was subjected to two-pronged attack.
First, the model was validated with field data to insure its effectiveness in
prediction. This proved to be successful, and consequently a method was
sought to simplify the estimation of model parameters. The existing methods
(of moment or maximum likelihood estimation) are not in the set of tools of an
average practitioner, thus inhibiting significantly the model use.

10

--. .*- *

.. . , "r IIII l
"]'

'] ' [
:: "

..
'''7

lt

The simplified technique uses only straight-line least-square error
fitting [32]. The least-square error fit has the following advantages:

1. Least square error fitting is well known and understood
J by the technical community.

2. Approximate straight-line fitting by eye is very quick
and approximates well a least-square error fit.

3. Every programmable calculator or computer contains
built-in least-square fitting software.

4. Since a picture is worth 1,000 words, least squares with
it pictorial display provides insight, confidence, and
trends.

5. The two model parameters are the intercept and the
slope. The graphical display portrays the sensitivity of
these parameters to data errors (or differences in
interpretation).

A further effort on increasing the usefulness of models focussed on the
common case when there is not enough data to estimate model parameters.
The result of this effort is a technique for obtaining a range for model
parameters.

8.0 Software Management Models

Two approaches to management models were undertaken. The first
approach modeled the development time and is described in [5]. The second
approach analyzed the effect of organizational structure on the software
management and will be described here.

8.1 Introduction

Software engineering encomposes all activities required for the
planning, design, development, generation, maintenance, enhancement and
modification of software. Since the most critical resource in software engi-
neering is creative -human thought, people management is of paramount
importance. The importance of the management function on software
engineering projects has been recognized repeatedly in the literature. One
survey done in 1975 on the Safeguard Data Processing System concluded that
"the shortage of experienced software managers on the project posed a more

serious challenge than the shortage of experienced programmers." 1

Since an organization's management policy is implemented in its
organizational structure it follows that the particular organizational structure
selected for the management of a software project will contribute significantly
to the degree of sucess achieved. This effect was recognized in a report on

J.D. Musa and F.N. Woomer, Jr., "Safeguard Data Processing System:

Software Project Management," Bell System Technical Journal, 1975, pp.
S245-S259.

,.. '._ . _. .-.

software modelling studies produced in 1977, which came to the conclusion
that " ... the organizational structure of the project team has a large influence

on the productivity, reliability and quality of the software produced. ' ' An
article in the December, 79 issue of Datamation asserted the fact more force-
fully: "Software managers who succeed in establishing effective organizations

will enjoy development rates 1,200% better than managers who fail. ,,2

If the effect that the organizational structure has on software engineer- 4,
ing can be quantified, it will be possible to select the optimum structure for
any given project. A quantitative model has been developed which utilizes
graphs of the organizational flow of control and information. Values are
assigned to each unit of information transmitted (o) and each link formed
(p). The model is constrained by the maximum number of interfaces that an
individual can handle effectively. Optimization of the organizational structure
is achieved by minimizing the result of trade-offs between the c's and the

's.

8.2 Software Engineering Management

In most software projects development costs are the total system
costs, since the prototype software system is the only one produced. That
is in sharp contrast with hardware projects where large-scale production
constitutes a major portion of system cost. Since the most critical (and
expensive) resource in software development is creative human thought,
people-management takes on increased significance. It becomes vital that the
optimum number of mix of designers, coders and testers be assigned to the
project; that they be organized into the optimum structure; and that they be
provided with the required management tools for controlling development
efforts and documenting results.

Thus, management of software engineering consists of managing human
creativity so as to maximize productivity. This necessitates identifying what
productivity is. Brooks [28, pp. 83-90] has shown that it is not necessarily
proportional to charged man-hours. We submit that productivity is primarily
a product of managment policy as implemented in organizational structure.
We further submit that what is implemented in these key areas is a manifest-
ation of management philosophy. The relationship among philosophy, policy
and organizational structure is depicted in Figure 1.

8.3 Management Policy and Organizational Structure

organization which provides managers with authority commensurate with their

M.L. Shooman and H. Ruston, "Final Report: Software Modelling
Studies," Program in Software Engineering Poly-EE-77-042, SRS112,
Sept. 30, 1977 pp. 23 and 24.

Edmund B. Daly, "Organizing for successful software development,"

Datamation, December 1979, pp. 107 to 120.

12

Ii

t. L

MANAGEMENT

PHILOSOPHY

manifested

as

MANAGEMENT

POLICY

is

implemented

in

ORGANIZATIONAL

STRUCTURE

FIGURE 1

RELATIONSHIP AMONG MANAGEMENT PHILOSOPHY,

POLICY AND ORGANIZATIONAL STRUCTURE

13

-- - II I_ i I I I . . .i- - , .L i ---" [I[:

responsibilities, and which promotes and rewards free exchange of informa-
tion between individuals, sections and departments.

Organizational structure determines the flow of control - who controls
which resources (human and others), and who has to account for which
results. It also determines the flow of information - who has access to
what, and what information is collected.

There are practically as many different organizational structures as
there are managers. However, three distinct types (project, functional, and

matrix) 1 emerge, and other structures can be considered to be a composite
of the basic types. These are best illustrated by an example. Let us
assume a new development organization is required to develop two projects:
Project A and Project B. Each project has three major functions to perform:
real-time software development (operating systems), support software devel-
opment (compilers), and hardware development (computers).

Figure 2 shows six separate organizational entities, one entity for each
technology for each project. Now the manner in which we combine these
separate organizations will give us a project organization structure, a func-
tional organization structure, or a matrix organization structure.

In a project organization structure (Figure 3) all resources required to
complete a project are organized under a single line manager who performs
both the technical and administrative functions. A functional organization
(Figure 4) groups all the people associated with one speciality under a
functional manager (e.g., all real-time software development for all projects).
A matrix organization (Figure 5) attempts to incorporate the advantages of
the other two basic structures, project and functional. Personnel are
grouped functionally for technical and administrative purposes, but are
responsive to a project manager. The project manager decides what will be
done, while the functional manager decides how to do the job, and supplies
all resources.

The organizational structures that will be examined using the quantita-
tive graph model will be made up of elements of the above three basic types
in varying degrees, and therefore will be advantageous or disadvantageous
depending on the value/cost/effort associated with the model parameters.
The parameter values, in turn, will be determined by the management
exigencies of a given project.

Daly, op. cit. p. 10

14

REAL-TIME SUPPORT HARDWARE

SOFTWARE SOFTWARE ORGANIZATION

ORGANIZATION ORGANIZATION

PROJECT A PROJECT A PROJECT A

(1) (2) (3)

REAL-TIME SUPPORT HARDWARE

SOFTWARE SOFTWARE ORGANIZATION

ORGANIZATION ORGANIZATION

PROJECT B PROJECT B PROJECT B

(4) (5) (6)

FIGURE 2

SIX ORGANIZATIONAL ENTITIES

~15
Vt

iI'

PROJECT A PROJECT B

DIRECTOR DIRECTOR

FIGURE 3
PROJECT ORGANIZATION

PROJECT

DIRECTOR

A and B

FIGURE 4
FUNCTIONAL ORGANIZATION

D.IRECTOR

COMBINE COMBINE COMBINE

PROJECT

MANAGER
A

PROJECT)--- ---

MANAGER

B

FIGURE 5
MATRIX ORGANIZATION

16

%F!

8.4 Productivity Models

Most quantitative models which examine the effect of organizational
structure on productivity assume a "worst case" situation. Shooman [2]
observes that software development productivity is not a direct function of
charged time. Charged time represents raw man hours composed of personal
time (coffee breaks, conversations, etc.), communication time, and lastly,
productive time. He assumes that the proportion of personal time is fixed at
10% regardless of the organizational structure. However, the remaining time
divisions are highly dependent on the organizational structure. He proposes
a model which breaks the total time (T) into development time (Td), and
communication time (T).

T = Td + T c (8.1)

He then postulates that for a project team consisting of Nd workers, every

team member communicates with every other team member. Thus the number
of interfaces is the number of combinations of Nd taken two at a time.

Nd N d Nd (Nd -81)
2 2! Nd! 2

If there are L total lines of code to be developed and Td is measured in

months, then the productivity (P) in iines/month is given by

L
Nd T d (8.3)

If we assume that a certain fraction (K) of the total work time (T) is spent
communication with each interface, then T the total communication time for
all the interfaces is given by c

Tc = KT Nd (N d - 1)/2 (8.4)

Substituting equation (8.4) in equation (8.1) and solving for T yields

T
T 1 - KNd (Nd - 1)/2 (8.5)

Multiplying both sides of equation (8.5) by Nd and substituting from equation
(8.3) yields

Nd 1- KNd (Nd - 1)/2 (8.6)

The numerator in equation (8.6) predicts a linear variation in man months
with program length; however, the denominator factor produces a plot which
curves upward indicating a decrease in productivity due to the increase in
Nd for larger programs.

17

p " - .. .

Similarly, Tausworthe f29, Chapter 10] measures software team produc-
tivity by defining "index of productivity" (P) in terms of the total number
of lines of code (L), number of workers on the project (W), and the average
time eaci'.,worker spent developing the software (T) by the formula

p= LWT (8.7)

T is then split into productive time (T) and non-productive time (Tn)
p np

spent interfacing with each of the other team members.

T = T + (W-l)Tnp (8.8)

He then postulates the individual productivity level (P.) that each team

member must sustain during his "productive" time periods so that the team
have overall productivity P is given by

P. = L = WP (8.9)
I - (W - 1)(T /T)n p

After extensive formula manipulation he arrives at the conclusion that
the amount of code that a project can produce per day has a maximum value,
found to be

1+(T /T) 1l +(T/T)
=P. n p(8.10)

max i 2 (T /T 2 Jnp

where the figure in braces represents the loss in personnel efficiency. This
maximum production rate is achieved when the team size is

1 + (T n/T)
W 2 (T /T (8.11)

np
He then concludes that a project hoping to deliver L lines within time T

using W workers having individual integrated-task productivities P. must
keep their nonproductive index (T /T) within the bound A

np
T 1 - (L/WTP i)np< .
T W-1 (8.12)

if there is to be success.

8.5 Quantitative Graph Model

The preceeding two models assume that each team member interacts
with every other team member. What if the team is organized into a different
structure? A quantitative model has been developed [391 which utilizes

graphs of the organizational flow of control and flow of information structures
to evaluate the effect of alternate organizational structures on the number of
communication paths, and on the volume of information flowing through each
path. The concept is illustrated in Figure 6. The lateral paths in the

.J 18

LEVEL

2

(a) FLOW OF CONTROL

LEVEL

1

3 >-
(b) FLOW OF INFORMATION

FIGURE 6
QUANTITATIVE GRAPH MODEL

19

-mm--

information flow model are analogous to the pre-review discussions imple-
mented in the "Generic Engineer" concept, [401 and are considered to be
essential to eife'ctive monitoring of progress. The models can easily be ex-
tended or transported to desired level of detail.

8.6 Graph Model Parameters

To illustrate the graph parameters we will decompose a problem, P,
into three subproblems - P1, P2, P3 - of identical size. Thus instead of
solving P, we can solve P1, P2 and P3. The three subproblems are in
general related to one another, i.e., some effort must be expended in having
them communicate with one another or coordinate them. (This may take the
form of engineers spending time coordinating their proposed solutions to
software subproblems). We wish to study the effect of the shape of the
system on its overall cost or complexity. Two alternative organizations will
be compared. In case 1, (Figure 7 (a)) each person communicates directly
with every other person. In case 2 (Figure 7 (b)) all communication is
routed through a central point (P2).

i 12 / 23 12 + 13 3 + 13

13

Case 1 Case 2
(a) (b)

FIGURE 7
DECOMPOSITION OF A PROBLEM P INTO THREE SUBPROBLEMS

20

40. . . ,

Let i abbe the amount of information exchange required between persons a

and b in order to complete their tasks. We define a constant, a as the
amount of effort per unit of information exchanges, i.e., the total effort
required to exchange i ab units of information is ai ab.

We define another constant, p, as the amount of effort associated withk
the existence of a direct communication path between any pair of persons.
This corresponds to the overhead cost of establishing direct communication
which is independent of the amount of information exchanged (e.g., the cost
of having a meeting, not counting the time spent actually exchanging
information). For problem P, letting l ab I for all a b, (i.e. , constant

information exchange) it can be shown that direct communication (Figure 7
Ve (a)) is more efficient if p < af 1, and the use of an intermediary (Figure 7

(b)) is better for a I <. Generalizing, in the case where the i as are
different, the use of an intermediary is efficient if a

a > a

and there is some c such that direct interfaces between (a and c) and (b
and c) exist.

It is apparent that the value assigned to the model parameters, ao and
will determine the optimum structure. This is realistic since the importance
given to accuracy of information and interpersonal interaction will vary from
one project to another.

A gross analysis of the model as developed to this point reveals that:

(i) if ai is small relative to i -implying either that very little effort

is required to transmit one unit of information over one link (a is small), or
that very few units of information are required to be exchanged between a
and b mr e n is small) - then the use of intermediaries is favored.

(ii) if a ab is large relative to p - implying that the overhead cost of

a direct link is small compared to the cost of exchanging information - then
the use of direct communication is favored.

8.7 Refinement of the Parameters

Software engineering managment information is transmitted ver-
bally, in writing, and through transcription. The accepted retention rate
for information transmitted verbally is between 40% and 60%. The integrity
of information transmitted in writing and via transcription is higher. A
realistic average degradation of information content for any one transfer of
information will therefore be taken to be 15%.

21

an4Llbi ml)- hnteueo nereire sfvrd

A, ORIGINAL INFORMATION

B/ 1 15% DEGRADATION

B INFO 1 PACKAGE

4< ... 15% DEGRADATION

C INO2 PACKAGE
15% DEGRADATION

D INFO 3 PACKAGE
45% = TOTAL DEGRADATION

TRANSMISSION-CAUSED DEGRADATION OF SOFTWARE ENGINEERING

MANAGEMENT INFORMATION

FIGURE 8

We illustrate the concept of information degradation in Figure 8. An
original information package is to be exchanged successively among four
individuals (A,B,C and D). In being transmitted from A to B the original
information content suffers a 15% degradation yielding the new information
package, info 1. Info 1 in turn is degraded by 15% in the transmission from
B to C yielding info 2. Info 2, when transmitted from C to D, is similarly
degraded yielding info 3. If D were to communicate the info 3 package back
to A, we would find that little more than half the original information content
remains.

Our graph model takes into account information degradation by incorpor-
ating it into a, the cost of transmitting one unit of information over one link.
The degradation cost is essentially the cost of checking for and correcting
errors. Thus, information degradation is directly proportional to the number
of information units transmitted, and to the number of links over which the
information is propagated.

8.8 Capacity Constraints

There is a limit to the number of interfaces that one individual can
handle. (Were this not so, then the lower boundary on the number of links
required would be represented by the case in which there exists only one
intermediary through which everyone communicates.) This capacity con-
straint has been studied extensively for organizational flow of control.
Theories and techniques for optimizing an individual's span of control anound.

22 /

, + + + 4 -/ .,

In an organization where the work is simple, routine, and repetitive - like
the basic kind of assembly work - a supervisor might be able to handle 25 to
30 people and do all the necessary supervisory work. If, however, the
work managed is variable, the supervisor must spend more time to set objec-
tives, to train, to put in new methods, and consequently cannot handle as
many people.

In the realm of software engineering management is quite a complex
function; therefore, an individual supervisor can supervise only a limited
number of people. Schleh [41] attacks some traditional methods of "spanning
the gap." He refers specifically to the tendency among companies to feel
that they have so many supervisors at the first level that they could easily
cut out one or two, have each remaining one handle a little more, and still
get by. This is an illusion. One large paper plant did this and found,
within three years, that its cost increased 15 percent, and quality slipped.
Costs and quality improved only after the span of control for each foreman
was decreased and each could handle his work.

On the other hand, executives often fail to grasp that many of their
communication problems come from too long a management chain. If the first t

supervisory level is not beyond its span of control, the second and third
can handle many more managers. In one plant a superintendent supervised
four foremen. When the foremen were set up with more manageable span of
control and trained to supervise, a superintendent could supervise eight to
nine foremen. Communication problems up and down the line were greatly
decreased because problems were solved in most cases by the foremen.

When applied to organizational flow of control and organizational flow of
information graphs, capacity constraints may cause an otherwise optimal
solution to become unfeasible. For example, the lower bound solution of
making one person an intermediary for all others, generally optimal for 3>>a
may be unfeasible as it places a tremendous burden on the intermediary and
may violate his capacity constraints. In such a situation, (not common in
the functional organization structure), it may be necessary to introduce
additional personnel strictly as intermediaries in order to satisfy the capacity I
contraints. For a given person (a), if we let his total capacity equal Ca

and the capacity required to solve the subproblem assigned to him equal to
R then his spare capacity available for communication (S) is equal to: i

Sa = Ca - Ra a

In order for a feasible solution to exist

Sa > (ai ab) +
b

i.e., each person must have at least enough spare capacity to handle his
own communication requirements plus one interface to someone else.

This work has been applied to three basic organizations structures
portrayed in Figures 3, 4, and 5 (project, functional, and matrix). The
following conclusions were reached.

23

.. 2 ... , ,.

a. The effect of organizational structure can be quantified
b. An organization structured to provide lateral exchange of

information maximizes productivity.

Further work is needed in this vital area. Two promising avenues for a
research are: 4 r

a. The resulting graph model when a and 0 parameters are nonlinear.
b. A comparison of Shooman's and Tausworthe's productivity models.

9.0 Other Research in Progress

9.1 Introduction

As in any research endeavor, the different tasks are in various
stages of completion. Some have reached a point Which justified comprehen-
sive research report (enumerated in Section 11.2). Other tasks will be
described here in order to document the progress to date.

The eleven technical sections of this chapter can be broadly classified
into the following categories:

1. Complexity: 9.2, 9.3, 9.4, 9.5
2. Models: 9.6, 9.7
3. Further Results on the Applications of Zipf's Law

9.8
4. Cost Estimation 9.9
5. Programming Methods for Low Error Contents 9.10
6. Testing Methodology 9.11

Each of these sections is self-contained with appropriate literature
references to related work. It is anticipated that several of these will be
developed in the future into comprehensive technical reports or research
papers.

9.2 Psychological Complexity.

This perception of complexity relates to the understanding of a
program. Up to now this work has not been related to the numerical com-
plexity arising from properties of the control graph. The studied properties
of the control graph, such as the number of regions (i.e., the cyclomatic
complexity) or the number of intersections (i.e., the knot count) or the
properties of length (i.e., maximum or mean path length), width (the
number of parallel paths), or area (the product of length and width) have
not been correlated with psychological complexity. Initial work in this areahas explored the correlation between expert judgement of a complexity of
program with the above quantitative geometric complexity measures. This
was done on a small scale with student-type badly-documented, programs.
Further work should ascertain correlation for practical program (with the
usual amount of annotative material) and relate it to the experiment
conducted by Amster [421.

24

T
•

, .

It

9.3 The Information Theory Approach to Complexity

This approach treats a 'number of residual errors as a manifesta-
tion of complexity. It assumes that less commonly used language features,
both syntactical and structural are less familiar, and thus give rise to more
errors than the familiar constructs. This conjecture has been tested by
automatically counting the frequencies of various language features and
correlating with the number of errors associated with this feature. The
present data is incomplete, and further data gathering and analysis are
required.

9.4 The Polynomial Measure of Complexity

This measure is described in detail in volume 2 of this report.
There is still more work to be done on this interesting measure. Firstly,
the present comparison of complexities of two polynomials pl(x) and P 2 (x) is

either based on both the coefficients of the corresponding powers and the
testing efforts, these being p1 (2) for pl(x) and P2 (2) for P2 (x). The

question of comparison of polynomials of unequal degrees is still largely an
open one. To this and other such issues one needs a testing effort to relate
this measure to the other geometrical and subjective (i.e., psychological)measures.

9.5 Application of Theory of Hardware Complexity to Software
Complexity

The object of this research is to apply the well studied theory of
hardware complexity to problems involving software complexity.

Hardware complexity is well understood at the gate level through the I *

synthesis procedures of Boolean functions. We know how to minimize switch-
ing circuits, we know how to build in redundancies for reliability, and we
know how to exchange and manipulate equivalent structures.

A programming process manipulates input data into output data in
several stages. In each stage some or all of the previous variables are
modified. This is analogous to a switching function applied to signals in a
switching interval. We have attempted to view the programming process as a
switching process and derived trade offs between processing time and
memory. Complexity was considered as the number of gates, number of used
memory cells (1-bit cells), and the needed execution time. The result was a
hyperbolic cylinder in a 3-dimensional region in the space of gates, memory
cells, and execution time.

9.6 Software Reliability Data Analysis and Model Fitting - A Case
History

A set of error data gathered from field trials of a medium-sized
real-time computer system has been analyzed. The software was 50K in size,
and ran on a microcomputer which performed measurements on a batch of

25

samples and issued reports. The reliability model used assumed that the
failure rate was constant and proportional to the number of remaining
errors[43,44,45]. The two model constants, K' the proportionality constant,
and E the total number of errors, were determined by two different
methodU. During the three-month field trials 176 tests hours were accumu-
lated, 132 errors were removed, and the system exhibited a mean time
between failure (MTBF) of about three hours during the third month. The
model predicts: (1) there are about 200 total errors, and (2) about 100-200
additional hours of testing are needed to raise the MTBF to 100 hours. This
goal appears to be unrealistic. The following tells how hardware, software,
and operation failure rates interact to yield system reliability, and discusses
how MTBF goals should be chosen.

This work is based upon actual experiences in predicting the reliability
of software. The 80 errors which are discussed were found by investigating
system failures which occurred during field trials of the system. These field
trials were held as part of the software integration phase of the development
process rather than subsequent to the integration phase as is generalLy the
case.

The objectives of this work were:

1. To illustrate the use of a model[431 in predicting software
reliability from failure data.

2. To investigate how to overcome the uncertainties of incomplete or
erroneous data and to evaluate the accuracy of the resulting esti-
mates.

3. To compare different model fitting methods and the sensitivities of
the resulting parameters.

4. To study how accurate the software reliability estimates must be
for management decisions.

5. To explore how one should establish mean-time-between-failure
(MTBF) requirements (or goals).

Some of the characteristics of the program and the environment in
which it was developed are listed below:

1. The program was basically a process controller, performing
measurements in real-time on a batch of samples, and producing
reports as output.

2. The developer was a division of a large (FORTUNE 500) company.

3. This was their first large software project.

4. The host computer was a modern minicomputer.

26

I"-4

5. Many portions of the software were written by outside consultants,
but the remainder and the system integration phase were done by
in-house designers.

6. The programs in question totaled about 50K lines of object *
(machine) code. The programmer wrote (source code) in a mixture
of assembly language and higher level language.

7. No formal configuration control or error recording techniques were
used.

8. All data on operation and errors which occurred during field trials
were kept in narrative form in a system operator's notebook.

Summary of the Reliability Model. The reliability model used in this
paper has been described in detail in a number of references [43,44,451. In
brief, the model assumes that the program enters the integration test phase
with ET total errors remaining in the software. As integration testing

proceeds, all detected errors are promptly corrected, and at any point in

the development cycle (after T months of development timel), a total of
E c() errors have been corrected, and the remaining number of errors is

C

Er.(T) = ET -E(T) (9.1)

The above is often normalized through division by the number of object code
instructions, IT

ET
(T) - - &c(T) (9.2)

where

er/IT c T

If we assume that the failure rate, z(t), is proportional to the

number of remaining errors, then

Zt = C C (E r) = K E (T) (9.3)
r ITr r

where C is a normalized proportionality constant and K" is a constant for the
given program length IT

1 In this paper the actual number of test hours is estimated and is used
as the development time variable rather than the cruder calendar days.

27

Using the principles of reliability theory[46], we obtain expressions for

the reliability function, R(t), and the mean time between failures (MTBF):

R(t) = exp[-K'Er(r)t] =exp[-K'(ET-Ec(t))t] (9.4)

MTBF - K[T Ec Z) (9.5) ,
1 _ 1

MTBF- K~rc) K -ET - EJ(T)I 95

(In this project it is difficult to accurately estimate IT for several reasons.
Thus we have chosen to use the mode) including the constant K .)

Data Analysis. Generally, the most difficult task in reliability estimation
is the analysis of failure data, and such is the case with this project. The
biggest problem is that the software was not under configuration control.
Thus, we do not know exactly how many errors were found in the software,
nor the date at which they were removed. By carefully interviewing one of
the principal designers of the software (who was in charge of the field
trials), we were able to identify all the field software errors and determine
whether or not they reoccurred later during the trials. However, while the
field trials were in progress, the rest of the in-house development team was
testing and debugging the software, and we were unable to obtain a record
of these errors (if one existed).

During the three-month segment of the field trials analyzed, 81 differ-
ent software errors occurred one or more times, for a total of 132 software
error occurrences. Also, six hardware errors and one operator error were
recorded. The monthly totals are shown in Table 1. Note that although we
don't know when an error is corrected, we do at least have a lower bound
on the removal time for errors which reoccurred. Thus, the meaning of
seven errors carried over from the nmonth of March to April means that these
seven errors have reoccurred in April or later. Consequently, they could
not have been removed during the month of March. The number of working
days excludes holidays, days when the field trial was not manned because
the operator was back in the development lab, and interruptions for instal-
lation of hardware modification and hardware repairs. The time estimate of ?

four hours of test time per day is a rough guess, since no hours were
recorded.

An initial set of software reliability computations is made in Table 2
along with estimates of the number of errors removed, based upon various
assumptions. (These error removal estimates are further discussed in the
next section.) Before elaboration of this data, however, we must examine
how the reliability goals were chosen for the system.

The reliability goal set for the entire system was 500 hours MTBF,
although the rationale behind this choice was never fully investigated. The
failure rates of the hardware, software, and operator must ali be included in
a prcdicton of system reliability. Unfortunately, the initial thinking
excluded the software and the operator. An estimate was made of the com-
puter hardware reliability, and after a few iterations wiLh the minicomputer

*, t L 28

Table 1
Error Occurrence During the Field Trial Period

Distinct
Software Un- Error

Time Period Errors removed Occur- Hardware Operator Test Test
1979 Found Errors rences Errors Errors Days Hours

March (19-30) 32 0 41 3 1 6 24

April (1-30) 31 7 58 2 0 16 64

May (1-31) 14 3 23 1 0 14 56

June (1-13) 4 3 10 0 0 8 32

Totals 81 - 132 6 1 44 176
(March 19-
June 13)

Table 2
Reliability Computations

Cumulative Number of
Time Period Test Software Failure Errors Removed at

1979 Hours Failures Rate z MTBF Beginning of Period

Assump- Assump- Assump-
tionl tion2 tion3

March (19-30) 24 41 1.71hr. - 1 0.59hr. 0 25 50

April (1-30) 64 58 0.91 1.10 25 60 120

May (1-31) 56 23 0.41 2.43 60 74 148

June (1-13) 32 10 0.31 3.20 74 81 162 [

29

manufacturer's reliability group, a MTBF estimate of 630 hours for the com-
puter hardware emerged. Since this seemed to predict a modest safety
factor, the matter was closed until much later when questions about the
software failure rate were raised.

How should the system reliability goals have been set initially? We
suggest that because of the lack of any other relevant information on the
system, it is reasonable to require that the MTBF of the software be equal
to the MTBF of the hardware. In addition, we might require that the oper-
ator MTBF* be five times greater than the hardware and software; in this
case 2500 hours. It is easy to show that if hardware, software, and
operator failures have a constant failure rate (exponential density function),
and if all failures are system failures, then we can write: **

R(t) = exp[-(A s + A h + Ao)tj (9.6)

MTBF= 1 = 1A s + h + +o

MTBF s MTBF MTBF o (9.7)

where

As h Xo = the failure rates of software, hardware, and operator, respec-

tively. MTBF s , MTBFh, MTBF o are the mean times between failures of

software, hardware, and operator, respectively. Subsitution of MTBF values
of 500, 500, and 2500 into Eq. (9.7) yields a system MTBF of 227 hours.
Based on the previously described hardware prediction, the 500 hr. goal for
the hardware seems to be realistic and reachable. To be on the safe side, if
we really hope to meet the 500 hr. and 2500 hr. goals for the software and
operator, we should design toward slightly higher goals to leave a little
safety margin to cushion us against, estimation errors, unknown contingen-
cies, bad luck, etc. One should then investigate whether the software and
reliability goals are realistic by making predictions, obtaining data on prede-
cessor or similar systems. This issue will be discussed further in the
concluding section.

We now return to our evaluation of the data gathered during the field
trials. Since we have amassed a total of 176 hours of operation Cduring
which six hardware and one operator failure occurred, (c.f. Table 1), we
compute the hardware and operator MTBF as 176/6 = 29 hr. and 176/1 = 176
hr., which are far below our goals. Since several of the hardware failures
were related to memory disk and interface problems, which were subsequently
fixed, one would anticipate that more recent tests of the hardware will show
improvement. The operator errors suggests effort should be directed toward

a good operator's manual and operator training.

* Since the operator manually loads the batch of samples and chooses the -

mode of system operation, there is ample opportunity for an occasional
human error.

* See Ref. 46, p. 2 2 1.

30

1[_ ,,J I J

_ _ _ _ f. '

Similarly, we compute software MTBF for each month. In Table 2 we
see that the software MTBF is 0.6 hr. during the month of March and rises
to 3.2 hours in June. The .,owth is graphically depicted in Fig. 9.

We reach the inescapable conclusion that both the hardware and software
are still in development test stage, and considerably more work must be done
before the product is ready for release. In fact, most of the motivation of
the next section is to try and estimate just how much more work must be
done before the software is ready for release.

Model Fitting The data analysis of the previous section has shown
that the entire system, both hardware and software, needs additional testing
and debugging. The primary question from the management viewpoint is how
long will this take. The marketing position of the company is closely tied to
the time of release of the software. Also, the cost of continued field and
laboratory testing and debugging can fairly well estimated knowing the
additional time required. (The impact on the work force is significant since
the company does not maintain a big software shop with many project and
programmers who can be rotated from project to project.) We will now use
the reliability model described in Eqs. (9.1)-(9.5) to estimate the growth in
software MTBF with continued testing.

The first estimate that we can make is to use the historical rule-of-
thumb* that the number of errors found during integration testing is about
1% of the number of program object instructions. Thus, ET is about 0.01 x

50,000 instructions, or 500 errors. In Fig. 10 and Fig. 11 we depict the
cumulative number of errors founa during field trials and the error
discovery rate vs. the number of test hours.

311

-I

* See Tables 2, 3 on pp. 364, 365 of Ref. 44.

_______________ ______________________________

5-

4-

S 3

2-

0 50 100 150 200
HOURS OF TEST

Fig. 9 Increase in software MTBF During Field Trials.

32

......... _ _ _ _ _ _

q- p 7,

* a

1.50 i
'IMARCH

0

U
w .0 -

5.0
U i I

U
m APRIL.50-

~MAY

0 ,JUNE

S0 50 100 150 200
HOURS OF TEST

Fig. 10 Decrease in Error Discovery Rate During Field Trials.

4.

cr

w
IL.
0
M 100-

w5

w 50

0 50 100 150 200
HOURS OF TEST

Fig. 11 Cumulative Number of Errors Found During Field Trials.

Clearly, it will take a long time to remove the 500 errors (or even the moreoptimistic amount of 250 errors) predicted by the rule-of-thumb, if the error
discovery rates shown in Fig. 10 continue. Of course the big question is
how many additional errors were found and corrected during this period in I
the development laboratory? Unfortunately, this key set of data was not
available, and various assumptions must be made.

Suppose we assume, as a worst case, that no additional errors were
found in the development laboratory, that ET = 500, and that the error
discovery rate will be 0.125 errors/hr.* Using these pessimistic values, the
additional 421 errors would require 3368 additional hours of testing.

2 Similarly, if we make a best case estimate, we can assume that ET = 250,
that the development laboratory also found 81 errors in addition to those
found in field trials, and that the combined error discovery rate of extended
field trials and additional laboratory development will be 0.500 errors/hr.
Using these optimistic values, the remaining 88 errors will take 176 additional
field and laboratory test hours to find. Assuming a crash schedule of ten
hours per day and seven days per week, the range of additional time needed
is from 2 weeks to 11 months! Clearly, the range of the above estimates is
broad, and we sorely need the missing data on errors found in the develop-
ment laboratory, and a better estimation procedure. In the next section we
make other assumptions about the number of development laboratory errors
found, and utilize the model of Eqs. 9.1-9.5, for improved estimation.

To use the reliability model described by Eqs. 9.1-9.5, we must have
an accurte record of Ec , and must have a measurement of MTBF at two
different points in the development cycle. This leads to two simultaneous
equations which are solved for the unknowns, K' and E T* Following the
development in Chap. 5 of Ref. 45, we begin by writing the reciprocal of
Eq. 9.5 at two different points.

X1 = K'(E T - Ec(Ci)) (9.6)

X 2
= K'(ErT - Ec(1 2,)) (9.7)

Solving Eqs. 9.6 and 9.7 we obtain

ic K' = E t) 1 2ctl (9.8)

j ET = ---.+ Ec(Tl) (9.9)

If we assume that the error discovery rate continues to drop, then we
probably should assume an even smaller value for error discovery rate
for a worst case estimate. This estimate assumes it holds steady.

.35

J*7-7

In order to utilize Eqs. 9.8 and 9.9 to estimate the model parameters,
we must know how many errors have been removed from the software at each
point in time. Since the data is incomplete in this regard, we have analyzed
the data by month for convenience rather than between releases of the
software.* In the last three columns of Table 2, we make three different
assumptions about error removal:

1. We assume that no errors are found in the development labor-
atory, and that errors found during the field trials are only
fixed at the end of the month. (Of course, if an error shows
up later during the field trials, it is listed as an unremoved
error, cf. Table 1, until the end of the month following its
last occurrence.)

A

2. We assume that no errors are found in the development
laboratory, and that errors found during field trials are fixed
during the same month (except for reoccurring ones).

3. Like Assumption 2, however, we assume that the development
laboratory finds an equal number of errors distinct from those
found in field testing. Thus, Assumption 3 leads to double
the number of errors of Assumption 2.

We apply Assumptions 1-3 for the three paired sets of data in Table 2
(March-April, April-May, May-June), use Eqs. 9.8 and 9.9, and arrive at
nine sets of values for ET and K', as shown in Table 3. Note that all the

estimates of ET are significantly smaller than our estimate of 500 errors

using the 1% rule-of-thumb.

It is interesting to examine Eq'. 9.5 for the rase where there is only
one error left. At this point the statistical assumptions of the model break
down; however, this value, MTBF = 1/K', can be viewed as a sort of limiting
value. Using the May-June values for Assumption 3, 1/K' = 140 hours. If
there are a total of 205 errors and 162 have been removed, then 43 remain
to be removed. If error removal proceeds at the same rate as error dis-
covery, and error discovery is 0.25/hr., then 172 hours of testing are
needed to raise the MTBF to about 140 hours. This is equivalent to 43
four-hour days. The choice of other assumptions would yield a different
result.

Another way of estimating the model parameter is obtained by rewriting
Eq. 9.6 for any time Ti and rearranging terms, so that

E(ti) = ET - '. (9.10)

* Even if we have accurate data, it is often a good procedure to lump the
data in an interval for smoothing, rather than treating each error
separately, c.f. Ref. 46, pp. 164-170.

36

4' .

Table 3
Determination of Model Parameters Using Eqs. 9.8 and 9.9, and the Data

Assumption 1 Assumption 2 Assumption 3

Months K' ET K' ET K' ET

March-April 0.032 53.4 0.0229 99.8 0.0114 200

April-May 0.0143 88.7 0.0357 85.5 0.0179 171

May-June 0.00714 117 0.0143 103 0.00714 205

Table 4
Comparison of the Various Reliability Estimates

Estimate ET 1/K' Additional time to reach
one remaining error

errors hours days

1% rule-of-thumb 500 3368
and discovery rate =
0.125 errors/hr. 4

1/2% rule-of-thumb 250 - 178
and discovery rate =
0.500

Table 2, May-June, 205 140 172
Assumption 3 and
Discovery rate =
0.25

Fig 3c and 182 76 80
discovery rate =
0.25

37

R

__ _ __ _ _ __ _ - .

4.

.,-

This equation represents a straight line, and the data pairs Ec(ri), Ai for

March, April, May, and June are data points. The parameters are deter-
mined from the intercept and slope of a least squares fit to the data. The L
results appear in Fig. 12a, b, c for Assumptions 1, 2, and 3, respectively.
In the case of Assumption 3, the results of the least squares fitting given in
Fig. 11c predict values of ET and 1/K' which are somewhat smaller than

those given by fitting the May-June data for Assumption 3 in Table 3. The
reason is readily apparent from an examination of Fig. 11c. The May-June
data fit essentially passes a straight line through the last two data points in
the figure. It is clear that such a straight line has a larger slope (larger
1/K') and will intersect the y axis at a larger value of ET.

One of the problems in analyzing this set of data is that there are only
four points to work with. If we had more accurate error removal data, we
could probably analyze the data in smaller intervals, perhaps once a week.
In such a situation, we would have more data points to base our model on.
Similarly, additional data on the system at later stages of development would
again provide additional data points.

Summary and Conclusions Based on the preceding analysis, we now
discuss the six objectives stated in the introduction:

1. Even though the available data was confused and sorely lack-
ing in many respects, by making certain assumptions, we
were able to fit a model and make several predictions depend-
ing on the assumptions used.

2. Our major assumptions were based on the number of errors
detected by the development laboratory, the times at which
laboratory and field detected errors were removed, and the
anticipated error discovery rate. In each case both an
optimistic and pessimistic value were chosen. The results
were largely insensitive to the assumptions, since in each
case, they predicted substantial and additional testing were
needed to have the software ready for release.

3. The various estimates made in this paper can be compared
based on the estimated number of total errors, ET, the

"limiting" MTBF = 1/K', and the additional test time needed
to reach the limiting MTBF. The results are given in Table
4. Note that except for the first worst case estimate, it
seems that there should be about 200 total errors, and about
100-200 additional hours of testing will be required to raise
the MTBF to about 100 hours.

4. Assuming that the results obtained were correct, the range of
estimates and their spread are really close enough to make a
management decision. The black picture of the worst case
estimate can probably be discarded. An important action item

38

4 K . . _ " -- "., . .._ - . ,,

~100.

100SLOPE x -IlK"s -50

so-0 K'x 0.02
INTERCEPT ET a82

U'60-

g40-

20 K

0'
0 0.4 0.8 1.2 1.6 2.0

FAILURE RATE

(a) ASSUMPTION I

SLOPE a -I/K"% -38.8

K'- 0.0l2
170INTERCEPT x ET :192

CI 140-

20

0.J4 0.8 1.2 .6 2.0
FAILURE RATE

(b) ASSUMPTION 3

Fig. ~ 20 12 Least Sqae Fit' ofTbe75aa o.8 91 a supin1
1b 0 Asupto 2 W(C ssmtin3.(sig R-0 opue

and RaioShakStaITCPcag No. 82610.

1430

110 :-

ii
, I

is to spend time with the software developers and determine
as accurately as possible how many errors were found in the
development laboratory, and when and in which release errors
found in development or in field trials were removed. Once
such data is clarified, the analysis done here can be repeated
in a few hours and better estimates can be made. Also of
prime importance is a study of the types of testing to be
performed during the next few months of field trials. Unless
new features and sequences are exercised, the error dis-
covery rate may continue to fall and progress may be slower
than predicted. (Also, in light of the decision to replace
version A by version B, it is imperative that B be placed
under effective configuration control.)

5. It seems that the goal of having a 500-hour MTBF for this
software development is unrealistic. In Ref. 43 the author
quotes typical MTBF of 3-50 hours. In Ref. 47 Musa meas-
ured the MTBF of four different programs, and they ranged
from 9-31 hours. It is time that management personnel be
made responsible for fixing such goals. These goals should
be based on experience with similar systems rather than num-
bers "picked from a hat" which sound attractive but are
unrealistic.

9.7 Application of Shooman's Exponential Model to Field Data.

Preliminary work has begun on fitting field data with Shooman's
macro exponential model [43,44]. The objective of the work is to evaluate
which of the several parameter estimation techniques devised is best in the
sense of ease of computation and accuracy of prediction. A further objective
is to generate a modest data base with the values of the parameters ET and

K for all the complete sets of available field data. Recent results, obtained
from 4 of the 16 sets provided by J. Musa [48], show a good correlation
between actual field experience and the prediction by the Shooman's model.

9.8 Further Results on the Applications of Zipf's Law

9.8.1 Introduction

Some of the most important work on complexity done in the
last decade is that generally referred to as software science [3]. Maurice
Halstead was the founder of this approach, and most of the work in this
area has been carried out by him, his former students, and other investiga-
tors. Much work was done on experimental verification of the formulas he
developed. Others have attempted to explore more basic probabilistic models
and derive similar software complexity metrics from fundamental principles
[20].

The first success in relating software science to basic Drobabilistic
models was to show thaL an operator-operand length formula. similar to
Halstead's formula, could be obtained by applying Zipf's Law to computer

40

- . -.--,_ __ __ __ _ .

m m = ,

1~
programs [201. More recent work has shown that:

(1) A probabilistic model of computer programs involving alternating
operators and operands [49] predicts either the Zipf Law length formula or
the Halstead length formula, depending on the assumptions made [21.

(2) The Halstead volume measure, V, is actually the information content
(Shannon Entropy) of the program [50].

One of the validation studies of software engineering involves the
application of the formulas [511 to a set of error data collected by Akiyama
[521. Akiyama's metric, (number of decision + calls), fits the data as well
as the Halstead effort measure, [2].

We have found that Halstead's results can be derived with Zipf's Laws
as a basis or through the use of a probabilistic model of a program generated
by selecting operators and operands according certain probabilistic rules.
In addition, we can show that many of the concepts are explained when we
compute the Shannon's information measure (i.e., entropy), for the program.

9.8.2 Zipf's Length Formula

The fundamental formula [20], for the operator-operand
length (i.e., token length) is given as

n = t(0.5772 + In t) (9.11)

(For definition of n and t, see Table 5). The constant 0.5772 is the Euler's
constant.

9.8.3 Estimation of Token Length at the Beginning of Design

The evolving field of software engineering has a great need
for theoretical concepts, especially quantitative ones. Thus, a complexity
measure such as the operator-operand length given in the preceding sections
is of considerable use as a tool for theoretical studies. However, it can play
an even more important role if it can be used for estimation of program
complexity early in the design process.

One method of initially estimating program length* (number of tokens)
is to estimate the number of types. We assume that the analyst initially has
a complete description of the problem (requirements) and that a partial
analysis and choice of key algorithms has been made (initial specifications
and preliminary design). An elementary approach might be to estimate the
token size by

(1) Estimate the number of operator types in the programming
language which will be used by the programmer.

The reader should remember that we do not include in our token count
certain nonexecutable code such as: comments, declares, assembler
directives, etc.

41

(2) Estimate the number of distinct operands by counting input
variables, output variables, intermediate variables, and con-
stants which will be needed.

(3) Sum the estimates of step (1) and (2) to obtain the value of t
and substitute in Eq. (9-11).

An estimation experiment along these lines was carried out on five different
programs [201. The estimated token lengths (obtained by reading the
algorithm and applying the above three steps) differ from the actual lengths
(obtained by count from the program) by -3.4%, -15.7%, +26.1%, +2.3%,
-32.8% respectively.

9.8.4 Relationship to Software Science

Halstead uses many of the same terms as we did in the preced-
ing sections; however, different notation is used. In order to avoid con-
fusion since we will be using both sets of symbols, a brief glossary of terms
to be used in this section is given in Table 5.

Table 5

Comparison of Equivalent Terms

Laemmel-Shooman Development Halstead Development

Symbol Terminology Symbol Terminology

t Number of operator types ql Number of unique or
distinct operators

t Number of operand types Number of unique
distinct operands

t Total operand-operator types q Vocabulary
t = t1 + t2 n = nl + n2

n1 Number of operator tokens N1 Total usage of all
the operators

n2 Number of operand tokens N2 Total usage of all
the operands

n Token length N Length
n n 1 I+ n2 N N 1 + N2

42

1*

9.8.5 Halstead's Length Formula

Halstead's gives a formula for program length based on a
combinatorial argument on how operators and operands can be combined to
form a program.

N = rj Jog 2 r1
+ 12 log 2 n2 (9.12)

where

N Program length (total operators plus operands)

qi - Number of operator types

Number of operand types.

Note that Eq. (9.11) and Eq. (9.12) are of similar form. In fact substi-
tution of t = nj + r2 and n = N into Eq. (1) allows direct comparison.

N = (%l + 2) x (0.5772 + ln(ql + Y) (9.13)

9.8.6 Comparison of Halstead and Zipf Lengths

We begin our comparison of Eqs. (9.11) and (9.12) by inves-
tigating certain limiting cases, and citing the results of a direct numerical
comparison for a number of examples. In the case where rl>1> 2 Eq. (9.13)
reduces to

N = nl (0.5772 + In r)

A similar result is obtained if r 2>q 1 . Furthermore, if the dominating q
term is large, the constant 0.5772 can be ignored and the two equations
differ by the ratio

n 1 l - 1 In 2 = 0.693log 2 n1 log 2

Thus, the Zipf length in such a case is about 30% smaller than the Halstead
length. For moderate size of the dominating r term, the constant 0.5772
tends to "boost" the Zipf length, reducing the difference.

We now consider the special case where the number of operator types is
equal to the number of operand types, that is, nl = r2 = n. The ratio of
Zipf length to Halstead length then becomes

0.5772 + In 2n 1.27 + 0.693 log 2 n

Iog 2 n log 2 q

Again, for large q the two measures differ by only In2 and for moderate
valus of q, the compensating constant is 1.27, which should narrow the
difference even more than before.

43

low
MCMII il

A numerical comparison was made between the length formulas by
counting t for 17 examples, substituting in the two equations, and comparing
the results with the value of N obtained by counting operators and operands
[20]. In some cases the results were optimistic and in some pessimistic and
the errors were consistently less then 14%.

9.8.7 An Alternating Operator-Operand Model

In Section 9.8.5 we stated the formula for the Halstead
length, Eq. (9.12), without any development. In this section we repeat one
of Halstead's original derivations and show that a slight modification leads to
the Zipf law length, Eq. (9.11). This development is especially appealing
for three reasons:

1. It provides a single derivation which leads to either the
Halstead or the Zipf length equation, depending on the
assumptions made.

2. It is based on a probabilistic model of how a program
can be constructed by alternating operators and oper-
ands.

3. It provides another theoretical model which leads to
Zipf's laws.

We begin by assuming the following model for a program:

A program is viewed as a sequence of symbols, made up of alternating
operator and operand symbols, chosen from "alphabets" of rl and r 2 symbols

respectively. The program contains exactly nl and q2 operator and operand

symbol types, and we consider the program to be generated by a stochasticprocess. The character string which represents the program is generated

by choosing at random from the alphabet of operators, then choosing at
random from the alphabet of operands, and continuing the alternation
process. The program generation stops when the last unused operator or
operand is chosen for the first time.

9.8.8 Derivation of Zipf's Length Equation From the Model

The length of the character string is calculated by foimulating
the probability distribution of operator and operand lengths and then com-
puting the expected length (mean length). For simplicity we focus on a
single character string composed of an alphabet of r symbols. We observe

that as our character string generator proceeds, it generates many sub-

* "Algorithm Dynamics," Maurice Halstead and Rudolf Bayer, Proceedings
1973 Annual ACM Conference, p. 126.

44

- ----

strings made up of k symbols, where k < rl. We denote the substring
lengths as SLk. By a substring length we mean the number of new symbols

generated before a new alphabet type is encountered. Clearly, the length of
the string which uses up all q symbol types is just the sum of the lengths of
its constituent substrings.

SL =l SLk (9.14)
k=i

The expected value operator is written as E(), and the expected value of a
sum of independent random variables is the sum of the expected values.*
Thus,

E(SL) = E(I SLk) I E(SLk) (9.15)
k=1 k=i

The probability that substring k has exactly s symbols is given by the
probability that first s-1 symbols are generated from k-i, alphabet types
followed by a single letter** generated from the remaining alphabet types.
If k=7, then there are 6 alphabet types out of rl symbols which have already
appeared. Thus for k=7, the probability of a substring sequence of length
s is given by

6S-1

P(SL7) = (-) (1--) (9.16)
'1 n 1

In general, for any value of k, the probability of a substring sequence of
length s is given by

s-1

k kP(SLk) = () (1-) (9.17)

and the expected value of substring length (see [54]), is given by

E(SLk+I) = k ((9.18)
sil

Equation (9.18) can be simplified if we notice that the last term is indepen-
dent of the summation index, and, the first two terms generate a known

* See M. Shooman, "Probabilistic Reliability", p. 404, or most probability
texts.

• * This means that the last substring is generated when the last unused
symbol is picked (i.e. used once). Note the similarity between this
assumption and those accompanying Zipf's law.

I
45

F__I

series 19I ixi- 2

i=1 (l-x) 2 (919)

Thus, Eq. (9.18)simplifies to

E(SL1 _ r

S1k+1) q-k (9.20)
1--

Substitution of Eq. (9.20) into Eq. (9.15) yields an expression for the
sequence length.

E(L (9.21)E(SL ri r-k+l
k=l

A term by term inspection of Eq. (9.21) shows that it is a sum of a de-

scending sequence of terms 1/n, 1/(r-),..., 1/1 which is equivalent to the
ascending sequence

q 1 (9.22)
E(SL) =l Ini

i=1

Had Halstead and Bayer desired, at this point in their derivation, they could
have approximated the summation and obtained

E(SL) = (0.5772 + In n) (9.23)

which is a different form of equation (9.11).

9.8.9 Derivation of Halstead's Length Equation From the Model

Halstead and Bayer chose to bound Eq. (9.22) by transform-
ing the summation. Letting

i = 2i

then

j = log 2

and for i = n, the last equation becomes j = log 2 n and for i = 1, =

log 2 1 0. Using these substitutions, the summation in Eq. 9.22 becomes

l0g2 r
E(SLq 1 1 (9.24)

j=0 2

46
'1

The leading terms in the summation above are 1 + 1/2 + 1/4 ... If we
recognize the fact that each term is always smaller than unity, then one can

bound Eq. (9.24) by assuming that each term I/2 J < 1, thus

E(SL) _< (9.25)*

If we return to our previously stated program model, and impose the
constraint that operators and operands must alternate, then the expected
length is the sum of the expected operator and operand lengths. Thus Eq.
(9.25) leads directly to Eq. (9.12), which is the Halstead length equation.

if we remove the restriction that operators and operands must
alternate, then rl = rllr 2 , and substitution into Eq. (9.23) yields the Zipf

length, [(c.f. Eq. (9.13)]. If we had still retained the restriction that
operators and operands alternate, and substituted into Eq. (9.23), we would
have obtained another length equation (which must surely give nearly the
same numerical answers), namely

L = rl (0.5772 + In n) + q2 (0.5772 + lq n2) (9.26)

9.8.10 Information Content of a Program

One of the most fundamental results of statistical communica-
tion theory is Shannon's information theory. The central formula defines the
information content (also known as the entropy H) which has the units of
bits. If we have a message which is selected from a set of i messages, each
with a probability of occurrence, pi, then the entropy is given by

i iI

H = - Y pj log 2p j = I pj log2 (1/p j) (9.27)
j=1 =1

If all the messages are equiprobable, then pj = 1/i, and Eq. (9.27) becomes

H = log 2 i (9.28)

For illustration, suppose that our family of messages is the 16 different
binary numbers we can express with a 4-digit binary number. In this case,
i=16, and if we assume pi = 1/16, then Eq. 9.28 yields H = 4 bits. This

example illustrates the appropriateness of "bits" as the unit for H. As a
second example, let us again consider that our messages are the 16 different
binary 4-digit numbers; but we now assume that pi = 1/2, P2 P3 1/4,
Pi = 0 for i = 4, 5,....,15.

Substitution of these values into Eq. (9.27) yields

• Strictly speaking, the upper limit of the summation must still be
an integer so it is really the largest integer smaller than log 2 (1+1).

47

I L I I I IiI ii

H 1 2 4 1 15bt
= 102+4log 2 g + 1 og o+....= bs

In general, one can show that H is maximized when all the pi's are equal.

If we drop the restriction that operators and operands must alternate,
then we can view a program as a sequence of N symbols (operators or
operands). If the probabilities of each symbol are equal, then p. = 1/(r 1 +

r2), and the entropy is given by

H = N log2 (rl + 2) (9.29)*

We now return to our Zipf's law model of a program and assume that
the probabilities, pj are not equiprobable but are given by Zipf's law. It can

be shown that 150] the use of the Euller-MacLaurin series allows one to
express the surrmation obtained by suostitution in Eq. (9.27) as

N (in t.)2
H = nt 71) + In (Int + 7/12)) (9.30)H = - -!' 7/12)

For say t > 100, we can neglect the 7/12 terms, and since {nt 1n2-1og 2 t Eq.
(9.30) can be simplified to give

H - N log2 (t Int) (9.31)

for large t, t >> Int, and we obtain

H - log 2 t (9.32)

Note that since t = il + n2, Eq. (9.32) gives 1/2 the entropy of Eq. (9.29).

This is due to the fact that the Zipf law distribution of probabilities has
reduced to 1/2 maximum value of H which the equiprobable distribution
yielded.

Halstead proposes that if Eq. (9.29) (or Eq. 9.32) represents the
information content (volume) of a program, then the minimum value of H.
denoted by H* is obtained if the minimum values of l' r2 , and N, n*, rm,

and N* are used. He defines the minimum number of operators to be two, a
function which does all the work of the program, f(), and an assignment
symbol (equal sign). Alternately we could consider the two operators as
PRINT (f(0). The minimum number of operands are the sum of the required
input and output variables. Since we only use each operator and operand
once N1 =il and N2 = r2' thus

Min =n = 2 (9.33)

Min =rj = sum of input and output variables (9.34)

Min N =n + n2 (9.35)

In his work on "Software Physics", Halstead defines a quantity called
volume, denoted by V, which has the same formula

48

.- ~ - w - -

Substitution of Eqs. (9.33)-(9.35) into Eqs. 9.29 and 9.32 yields

V* = (2 + rj) Iog 2 (2 + n*) (9.36)

H* = V*/2 (9.37)

A direct extension of the concept of minimum information content or
volume is to define the level, f, of a program as the ratio of minimum volume
to actual volume

= H (9.38)

Halstead proposes an effort measure, E, which is the number of mental
discriminations needed to develop a program. He postulates that this measure
should be proportional to the program volume and inversely proportional to

-the level, thus
V

E = -V (9.39)

Using Eq. 9.38 and the fact that H = V/2, (for a Zipf law distribution), we
obtain alternate expressions for E as

,E = V2 H2 (9.40)

9.8.11 Correlation Between the Proposed Metrics and Experience.

In this section we investigate the correlation between the
number of program errors or man-months of development time and:

(1) the token length;
(2) the volume/information;
(3) the effort metric E.

The complexity measures developed in the preceding sections are
useful in two ways: (1) they provide metrics which allow comparison of the
relative complexity of two different designs or algorithms, (2) when multiplied
by an appropriate proportionality constant, they should provide estimates
and predictions for the number of errors and manpower required for software
development.

Number of Errors vs. Complexity We begin by discussing the relation-
ship between the number of errors and our measures of complexity.
Unfortunately, there are only a few sets of complete error data in the
literature. We use the set of data collected by Akiyama [511 for the cor-
relation studies which follow. Akiyama's machine language program was
-about 25,000 assembly language instructions long and contained the 9 modules
shown in Table 6. The number of bugs (errors) found in each module
during development is given in the third column of the table.

The data collected by Akiyama is sufficiently complete to warrant detailed
exploration, and four different hypotheses will be tested:

49

4K

Table 6 Raw Data from Akiyama (151])

Machine lang. Desisions+

Module Statements Bugs Decisions Calls Calls

MA 4,032 102 372 283 655
* MB 1,329 18 215 44 249

MC 5,453 93 (146)* 552 362 914
MD 1,674 26 111 130 241
ME 2,051 71 315 197 512
MF 2,513 37 217 186 403
MG 699 16 104 32 136
MH 3,792 50 233 110 343
MX 3,412 80 416 230 646

*Akiyama gave two different values for this module

i

t

Table 7 Information Derived from Akiyama's Data

N = Twice the
number of ma-
chine language

Module statements rl n2 H E

MA 8,064 471 442 79.3 x 103 170.3 x 106
MB 2,658 180 176 22.5 15.3
MC 10,906 610 574 111.3 322.6
MD 3f348 231 201 29.3 28.2
ME 4,102 366 138 36.8 100.2
MF 5,026 322 287 46.5 65.5
MG 1,398 131 76 10.8 6.5
MH 7,584 252 603 73.9 58.5
MX 6,824 433 357 65.7 135.9

50

• ., .~~~~'." ,,.- .:,

Length Hypothesis The number of bugs is proportional to the
number of machine language statements. Since each machine language state-ment contains one operator and one operand, the number of machine

statements is just 1/2 the number of tokens (operators + operands). Thus a
study of bugs vs. machine language statements or token length are equivalent j
since two lengths are directly proportional to another.

2. Information Hypothesis - The number of bugs is proportional to
the information content of the program, where information content (Halstead
volume), is calculated from Eqs. (9.29) or (9.32). (The two equations are
identical, except for the factor of 1/2, and that will be absorbed in the
experimentally determined constant of proportionality).

3. Halstead Effort Measure - The number of bugs is proportional to
effort in programming, E. This hypothesis was explored by Funami and
Halstead. [52]

4. Akiyama's Hypothesis - The number of bugs is proportional to the
number of decisions plus subroutine cells.

9.8.12 Use of Akiyama's Data for Correlating Errors and Complexity
Measures

Akiyama's raw data, given in Table 7, provides us with the

appropriate quantities to test the Length Hypothesis and Akiyama's Hypothe-
sis. In order to calculate H and E so as to test the other two hypotheses,
we must make some assumptions. First we assume that each machine langauge
statement contains one operator and one operand, thus N = twice the number
of statements. (See second column of Table 7). To compute the number of
unique operators, rl, Halstead assumed that it was equal to the sum of the

number of machine language instruction types, the number or program de-
cisions, and the number of unique program calls. He guessed that there
were 64 types of machine language instructions, and that only 1/3 of the
subroutine calls were unique and arrived at the formula

rl= decisions + (calls/3) + 64 (9.41)

The third column of Table 7 is calculatd by use of the above formula.
Knowing rl and N, we are able to calculate n2 by substitution in Eq. (9.12).

This provides the data necessary for computation of H (see Table 7).
Finally, if we assume that = q2' we can compute E. The four hypotheses

are tested in Figs. 13-16. Clearly the first two hypotheses fit the data
fairly well, but the third and fourth hypotheses yield better fits. In fact,
Halstead's effort measure yields an excellent fit except for the MC module.
(Note, since Akiyama speaks of two values for the MC we plot one as MC
and the other as MC').

51

01,
0

U)

,q, 44

00

ow 0 0
tp. CL

46 In In T C4

do (0 0aiw

52c

a

0

4

0

iti

--0

xx

- 0
o.

01 X012

53

o.,

.t t * * I I I o I I
0~ a C € Q 0 00O 0 Q O

53

'9 .

-e N

4 h4

0 '0

0

0 to-,'I

544

0-

C)

OV 22
a) 0

Us 0

Cd

FndU

00

ao o0

55~

9.8.13 Correlation of Hypotheses with data

A best straight line, (y = mx + b), was fitted to Figs.13 16. Both the values for MC, 93 and 146, were used. The resulting

values of m, b, and the correlation coefficient p are given in Table 8. The
straight lines drawn through the data in Figs. 13 - 16, are not the least
squares lines, but were chosen by eye to: (1) pass through the origin; (2)
have an even reciprocal slope; (3) fit the data points reasonably well. A
set of proportionality constants for the lines given in the figures is
calculated in Table 9.

9.8.14 Summary and Conclusions

The major results obtained are:

1. It was shown both analytically and experimentally that the
Zipf law length formula and the Halstead length formula yield
answers which agree within 15% for the examples tested.

2. A probabilistic model of a program first suggested by
Halstead can be used to derive the Halstead formula by
placing an upper bound on the sum of a series or the Zipf
formula by approximating the sum. From a theoretical view-
point the latter seems better.

3. By introducing the concept of program information content
(entropy), we are able to show that the quantity defined as
volume by Halstead is the information content of a program if
we assume an equiprobable distribution of operators and
operands. Assuming a Zipf law distribution reduces the
information content by a factor of 2.

4. Correlation of several measures with Akiyama's data on
program errors show good agreement for all measures, but
the best correlation is for the effort function and for
Akiyama's measure.

More work needs to be done to compare the above results with

those obtained by studying other data bases.

9.9 Cost Estimation

The work on cost estimation followed several avenues. Initially,
the seven prominent methods (Price S, Doty, Walston-Felix, Wolverton,
Aron, SDC, and Nelson) were compared by predicting the development costs
with each method for the same program. Secondly, an inflation correction
was incorporated and a corrected prediction was obtained. The cost in

thousands of dollars varied from $625K to $1,525K the mean value was
$1,096K and be variance $303K. Other features of this work included:

56

L . i. - ; .,; ,. - ',,.

Table 8

Least Squares Fit of a Straight Line for the Four Hypotheses

Correlation
Hypothesis Coefficient Slope Intercept

p m b
1. Bugs Proportional

to Machine Language
Instructions

MC = 93 0.832 38.5 666
MC' = 146 0.896 31.2 879

2. Bugs Proportional
to Information
Content

MC = 93 0.828 811 8,487
MC'= 146 0.900 865 12,572

3. Bugs Proportional
to Effort E 1.

MC = 93 0.853 2,595,000 - 41,835,000
MC'= 146 0.982 2,251,000 - 36,251,000

4. Bugs Proportional
to Calls plus
Decisions

MC = 93 0.923 7 72
MC'= 146 0.976 5.58 116.9

57

mnV ._ _ ,,L, ,

,4L

~Table 9

Comparison of Proportionality Constants

1 statement 2 tokens

2 x 10- 2 bugs/statement - 2 tokens/statement = 1 x 10-2 bugs/token

1 x 10 - 2 bugs/token + lx 103 bugs/bit = 10 bits/token

I x 10 2 bugs/token 0.67 x 10- bugs/discrimination = 1.5 x 10 disc./
token

1 x 10- 2 bugs/token + 1.25x1O - 1 bugs/(decision + call) = 8x1O- 2 (dec. + call)/
token

58

. , € -,

a. Fitting of the Putnam model to safeguard manpower data.

b. Evaluation of life cycle cost fidelity of the Putnam model with
known total costs and build up rate estimated from first year data
only."

c. A statistical justification for the superiority of bottom-up estimation
over top-down estimation. (i.e., bottom-up estimates are closer to
actual costs).

Further discussion, details, and conclusion appear in Reference 1551.

9.10 Programming Methods for Low-Error Content

The main body of this work is described in volume 3 of this
report. Further work focussed on automatic proramming techniques, began
several years ago (and reported in progress reports proceeding the current I
contract), and continued on a small-effort basis.

The automatic programming contains currently a relatively large pool of
programs. Further experiments were performed using this pool of programs.
The result will appear in a future comprehensive report.

9.11 Testing

Our previous work on testing was based on graph and flow chart
models of programs [26]. The automatic test driver traversed all graph
paths in one program and is described in [341. The statistical approach to
testing comprises volume 4 of this report. Several other efforts have been
initialed and are listed below:

a. The previously developed techniques for counting and identi-
fying graph paths for loopless programs have been generalized
to included programs with loops.

b. The work on automatic test drivers is being broadened to
include other languages (e.g. PASCAL and Ada), and addi-
tional features.

c. Preliminary analysis has begun on the design of a natural test
driver. Such a test driver will transverse all (or a subset
of) the actual program paths in the flow chart. This improve-
ment reduces the number of paths to be listed by eliminating
graph paths which cannot be reached, thus decreasing test
effort and increasing realism.

59

i I l c

10. REFERENCES

1. M. L. Shooman, "Software Reliability: Measurement and Models," 1975
Annual Reliability and Maintainability Symposium.

2. M. L. Shooman, "Software Engineering: Reliability, Design, Manage-
ment," Notes for CS 606, Polytechnic Institute of New York, Dept of
Elec. Engineering, Fall 1977, McGraw-Hill Book Co., New York 1981.

3. M. H. Halstead, "Software Science," Elsevier, North-Holland, New
York, New York, 1977.

4. F. Akiyama, "An Example of Software System Debugging," Information
Processing 71, North-Holland Publishing Co., New York 1972.

5. M. L. Shooman and H. Ruston, "Summary of Technical Progress,
Investigation of Software Models," RADC-TR-79-188, July 1979.AD#A073639.

6. M. L. Shooman, "Probabilistic Models for Software Reliability Prediction,"
Statistical Methods for the Evaluation of Computer System Performance,
Frieberger, Editor, Academic Press, New York, 1972.

7. J. Jelinski and P.B. Moranda, "Software Reliability Research," same
source as 6.

8. J. Musa, "A Theory of Software Reliability and It's Application, IEEE
Trans. on Software Engineering, Vol. SE-2, No. 3, Sept. 1975, p. 312.

9. B. Littlewood, "A Bayesian Reliability Growth Model For Computer
Software," Record 1973 IEEE Symposium on Computer Software
Reliability, pp. 70-77.

10. M. L. Shooman and S. Natarajan, "Effect of Manpower Deployment and
Error Generation on Software Reliability," Proceedings MR, Symposium
on Computer Software Engineering, New York City, April 1976.

11. D. K. Lloyd and M. Lipow, "Reliability Management Methods. and
Mathematics," 2nd Edition Published by the authors, 201 Calle Miramar,
Redondo Beach, CA 90277.

12. M. L. Shooman, "Structural Models for Software Reliability Prediction,"
Second National Conference on Software Reliability, October 1976, San
Francisco.

13. A. N. Sukert, "An Investigation of Software Reliability Models,"
Proceedings 1977 Annual Reliability and Maintainability Symposium,
IEEE, New York, N. Y. p. 478ff..

14. ITT Research Institute: "Software Engineering Research Reviews -
Quantitative Software Models," Data and Analysis Center for Software,
Rome Air Development Center, Griffiss AFB, N. Y., March 1979.

60

REFERENCES (Cont'd)

15. G. J. Schick and R. W. Wolverton, "Analysis of Competing Software
Reliability Models," IEEE Transactions on Software Engineering Vol.
SE-4.

16. A. K. Trivedi and M. L. Shooman, "A Many-State Markov Model for the
Estimation and Prediction of Computer Software Performance Parameters."
Proceedings 1975 International Conference on Reliable Software, April
1975.

17. L. A. Belady, "On Software Complexity," Proceedings of the Workshop
on Quantitative Software Models, Kiamesha Lake, N. Y., Oct. 9-11,
1979, IEEE New York.

18. B. Curtis, et. al., "Measuring the Psychological Complexity of Software
Maintenance Tasks with the Halstead and McCabe Metrics," IEEE Trans-
actions on Software Engineering, 1979, pp. 96-104.

19. B. Curtis, "In Search of Software Complexity," same source as 17, pp.
95-106.

20. A. Laemmel and M. L. Shooman, "Statistical (Natural) Language Theory
and Computer Program Complexity," POLY EE/EP-76-020, SMART 107,
August 1977.

21. Henry Ruston, "The Polynomial measure of Complexity," POLY EE
79-057, SRS 117, Volume 2, Polytechnic Institute of N. Y., Sept. 1979.

22. M. H. Halstead, "Software Physics: Basic Principles, IBM Research
Report RJ 1582, T. J. Watson Research Center, Yorktown Heights, N.
Y., 1975.

23. M. Lipow, "Application of Algebraic Methods to Computer Program
Analysis," Report TRW-55-73-10, TRW Redondo Beach CA., May 1973.

24. S. Mohanty, "Models and Measurements for Quality Assessment of S

oftware," Computing Surveys, Vol. 11, No. 3, September 1979.

25. E. F. Miller, "Automatic Generation of 'rest Case Data Sets," Proceed-
ings of the IEEE Computer Software and Applications Conference,
Chicago, No. 8-11, 1977.

26. G.S. Popkin and M. L. Shooman, "On the Number of Tests Necessary
to Verify a Computer Program," POLY EE 78-047, SRS 113, Polytechnic
Institute of N. Y., June 1978.

27. A. Laemmel, "A Statistical Theory of Computer Program Testing," POLY
EE 80-004, SRS 119 Volume 4, Polytechnic Institute of N. Y., June
1980.

61

MW .#

REFERENCES (Cont'd)

28. F. Brooks, "The Mythical Man-Month, Addison-Wesley Pub. Co., Reading,
Mass. 1975.

29. R. C. Tausworthe "Standarized Development of Computer Software,"
Prentice-Hall, New Jersey, 1977.

30. M. L. Shooman and A. Kershenbaum, "Models for the Management of
Software," in Summary of Technical Progress, RADC-TR-79-188, pp.
33-35, July 1979.

31. A. G. Cormier, "A Quantitative Analysis of the Effect of Organizational
Structure on Software Engineering Management," Master of Science

!e Thesis, Polytechnic Institute of New York, 1980.

32. M. L. Shooman, "Software Reliability Data Analysis and Model Fitting,"Proceedings of the Workshop on Quantitiative Software Models, IKiamesha Lake, N.Y., pp. 182-189, IEEE, Oct. 1979.

33. Workshop on Quantitative Software Models for Reliability, Complexity
and Cost, IEEE, October 1979.

34. D. L. Baggi and M. L. Shooman, "Software Test Models and Implementa.
tion of Associated Test Drivers," RADC-TR-80-45, March 1980.AD#A065004.

35. M. Klerer, "Experimental Study of Two-dimensional Language vs
FORTRAN for First-Course Programmers," SRS - 118, Volume 3,
Polytechnic Institute of N. Y., Jan. 1980.

36. A. Laemmel, "Study of Recursive Function Theory and Its Application
to Program Complexity," SMART 108-C POLY EE/EP 77-037 Polytechnic
Institute of N. Y., May 1978. t

37. T. McCabe, "A Complexity Measure," IEEE Trans. on Software
Engineering, Vol. SE-2, No. 4, Dec. 1976, pp. 308-320.

38. M. L. Shooman and H. Ruston "Final Report-Software Modeling Studies,"
Polytechnic Institute of New York, Sept. 1977, pp. 27-29.

39. A. Kershenbaum, "Software Management Models: A Graph Theoretic
Approach to System Morphology," Unpublished Summary, presented at
the SOFTY Research Meeting, Feb. 5, 1979, Polytechnic Institute of
New York, Farmingdale, N. Y.

40. J. B. Synnott, III, (Bell Laboratories), "Managing Software Develop-
ment - Requirements to Delivery," Proceedings, Computer Software and
Application Conference, 78, Palmer House, Chicago, p. 19.

41. E.C. Schleh, "Managing for Success: Capitalizing on Each Individual"
IEEE Engineering Management Review, Volume 7, Number 4, December
1979, pp. 33-41.

62

j_ . -- . , .- :

REFERENCES (Cont'd)

42. S. J. Amster, et al, "An Experiment in Automatic Quality Evaluation of
Software," Proceedings of the Polytechnic Symposium on Computer Soft-
ware Engineering, Polytechnic Ress, Brooklyn, N. Y. 1976, pp. 171-197. f

43. M.L. Shooman, "Probabilistic Models for Software Reliability Prediction,"
published in "Statistical Computer Performance Evaluation," Walter
Freiberger Editor, Academic Press, New York, 1972, pp. 485-497.

44., "Software Reliability ,' published in "Computing
Systems Reliability," T. Anderson and B. Randell Editors, Cambridge
University Press, New York, 1979.

45. _ "Software Engineering: Design, Reliability,
Management," McGraw-Hill Book Co., New York, 1980.

46. __, "Probabilistic Reliability: An Engineering Approach,"
McGraw-Hill Book Co., New York, 1968.

47. J.D. Musa, "A Theory of Software Reliability and Its Application," IEEE
Transactions on Software Engineering, Vol. SE-1, No. 3, September
1975, p. 313.

48. 1975,_p.313., Private Communication to M. L. Shooman, listing
excertion true data for 16 proicts, Jan. 1980.

49. M. Halstead and R. Bayer, "Algorithm Dynamics," Proceeding 1973
Annual ACM Conference, p. 126.

50. A. E. Laemmel, Unpublished Memorandum, Dec. 1976.

51. F. Akiyama, "An Example of Software System Debugging," Proceedings
of the IFIP Congress, 353-58 (1971).

52. Y. Funami and M. Halstead, "A Software Physics Analysis of Akiyama's
Debugging Data, Proceedings of the Symposium on Computer Software
Engineering, Polytechnic Press, Brooklyn, April 20-22, 1976.

53. G. K. Zipf, "The Psycho-biology of Language: Arn Introduction to
Dynamic Philogy," First Edition 1935 by Houghton Miffin Co. Boston,
Paper Back Edition, MIT Press, Cambridge Mass., 1965.

54. M.L. Shooman, "Probabilistic Reliability: An Engineering Approach,"
McGraw-Hill Book Co., New York, 1968, p. 55.

55., "Software Cost Models," Proceedings of the Workshop
on Quantative Software Models, Kiamesha Lake, N.Y., pp. 1-19, IEEE,
Oct. 1979.

63

i r "

11.0 Professional Activites

The results of the research Oescribed in the preceding safes, have
been disseminated in preliminary and completed forms both orally and in

*writing. The professional activities are grouped below under the following
categories: (1) Papers, (2) Reports, (3) Symposia and Workshops, (4)
Talks and Seminars, (5) Books, (6) Technical Committees, and (8) Profes-
sional Awards.

11.1 Papers

In the following we list the papers published in Journals and
Conference Proceedings during the period of this contract.

1. D.L. Baggi and M.L. Shooman, "An Automatic Driver for Pseudo
Exhaustive Software Testing," Proc. 1978 Spring Computer Conference,
Feb. 1978.

2. M.L. Shooman, "Safety Metrics and Human Operator Control of Complex

Systems," Proc. 4th Int. System Safety Conference, pp. 161-166, San
Francisco, July 1979.

3. M.L. Shooman, "Software Reliability," in Computing Systems Reliability,"
T. Anderson and B. Randell editors, Cambridge University. Press, New
York, 1979.

4. M.L. Shooman, "Software Cost Models," Proceedings of the Workshop on
Quantitative Software Models, IEEE, pp. 1-19, Oct. 1979.

5. M.L. Shooman, Software Reliability Data Analysis and Model Fitting,"
Proceedings of the Workshop on Quantitative Software Models, IEEE,
pp. 182-189, Oct. 1979.

6. D.L. Baggi, "Models of Automatic Drivers for Pseudo-Exhaustive Soft-
ware Testing," Proceedings of the Workshop on Quantitative Software
Models, IEEE, pp. 214-223, Oct. 1979.

7. H. Ruston, "The Polynomial Measure of Complexity," Submitted to IEEE
Transactions on Software Engineering, October 1979.

8. E. Berlinger, "An Information Theory Based Complexity Measure," 1980
National Computer Conference.

9. S. Kao and M.L. Shoornan "Probabilistic Approaches to the Combination
of Loads in Structural Design," Proceedings of the Annual Reliability
and Maintainability Symposium, Jan. 1981

10. M.L. Shooman and R. Schmidt, "Fitting of Software Error and Reliability
Models to Field Failure Data" Invited paper, Proceeding of the Conference
or Applied Probability - Computer Science TIMS/ORSA Fall 1981.

64

2,

d-4

V7-7
Papers (Cont'd)

11. R.F. juels, "Fault Mending Considerations of Reversible Directed
Links," Submitted to the 1981 International Symposium on Fault-Tolerant
Computing.

11.2 Reports

The following reports were published during the duration of this
contract

1. M.L. Shooman and S. Sinkar, "Generation of Reliability and Safety Data
by Analysis of Expert Opinim," Polytechnic Institute of N.Y., Jan.
1978.

2. A' Laemmel, "Study of Recursive Function Theory and its Applications
to Program Complexity," SMART 108-C, Poly EE/EP-77-037 May 1978

3. G.S. Popkin and M.L. Shooman, "On the Number of Tests Necessary to
Verify a Computer Program," RAOC-TR-78-229, November 1978.
AD#A089997.

4. M.L. Shooman and H. Ruston, "Software Modeling Studies," Progress
Report 43, Report R-452.43.785 pp. 423-448 Polytechnic Institute of
N.Y., Nov. 1970.

5. M.L. Shooman, "Mathematical Models of Human and Ship Responses for

Minimum Time Turns," CADRF.40-7901-01 National Maritime Research
Center, Kings Point, N.Y. Feb. 1979.

6. M.L. Shooman and H. Ruston, "Summary of Technical Progress, Investi-
gation of Software Models," RADC-TR-79-188, July 1979.

7. H. Ruston, "The Polynomial Measure of Complexity," POLY EE 79-057
SRS 117, Sept. 1979.

8. M.L. Shooman and H. Ruston, "Software Modeling Studies," Progress
Report 44, Report-452.44-79 Polytechnic Institute of N.Y., Nov. 1979.

9. M. Klerer, "Experimental Study of a Two-Dimensional Language vs
Fortran for First-Course Programmers, SRS-118, POLY EE-80-001, Jan.
1980.

10. M.L. Shooman and H. Ruston Final Report, Software Modeling Studies
SRS 120, POLY EE 80-006 Jan. 1980.

11. M.L. Shooman, "Models at Helmsman and Pilot Behavior for Maneuvering
Ships", Grumman Data Systems Corp. Report, Jan. 25, 1980.

12. C. Marshall, "Incentivizing Availability Warranties," POLY-EE Report
No. 80-002, EE-126 March 1980.

65

. _ 4 -.4 0 7

4 4

_ _

Reports (Cont'd)

13. D.L. Baggi and M.L. Shooman "Software Test Drivers," RADC-TR-80-45,
March 1980.

14. A.E. Laemmel, "A Statistical Theory of Computer Program Testing,"
SRS-119, POLY EE 80-004, June 1980.

11.3 Symposia and Workshops t
Because of the crucial role of quantative models in the software

field, and the high relevance to the objectives of this contract, we organized
a workshop on such models. This workshop took place on October 11 and 12
at the Concord Hotel, Kiamesha Lake, N.Y.

The workshop served as the focal point for the nearly 100 leading
workers in the field, who came from England, France, Canada, and all parts
of the United States. The technical sessions, concentrating on costing,
complexity, and reliability began with a brief tutorial by an expert in field.
The program of each session contained papers reporting on the advances in
the field. The final session critically assessed the state of the art and the
needs of each area during the next decade.

The resulting proceeding were published by IEEE and are available from
the Computer Society.

11.4 Talks and Seminars

M.L. Shooman

1. "Software Reliability Models", Computer Science Seminor, Queens College,
May 18, 1978.

2. "Software Engineering Models," ACM Spring Lecture Series, New York
Chapter, May 18, 25 1978.

3. "Software Models-Some Applications," Syracuse University/RADC Work-
shop, Minnowbrook, Sept. 1978.

4. Discussant, Software Reliability Research, Graduate Reading Course,
University of Maryland, Sept. 23, 1978.

5. "Software Engineering Models", Computer Science Seminar, University of
Maryland, Oct. 1978.

6. Software Testing and Development Industry Seminars, CDC Corporation,
Denver, Colorado, Washington, D.C. ,Pittsburg, Pa., 1978-1979.

7. "Availability and Reliability Modeling," Industry Seminars Stata, Metrics,
Princeton, N.J. 1978, Elizabeth, N.Y. 1979, New Brunswick (Rutgers
Univ.), 1979.

66

PM1 7

Talks and Seminars - Cont'd (M.L. Shooman)
8. Invited Lecturer For 7 Sessions, Course on Software Engineering, IBM

System Research Institute, New York, 1979.

9. "Software Development Techniques," Invited Seminar, Martin-Marieta
Internal Workshop, Feb. 1979.

10. "Safety Metrics and Human Operator Control of Complex Systems,"
Proc. 4th International System Safety Conference, San Francisco, July
1979.

11. "Software Reliability and Software Complexity", Invited Lecturer, Course
on Advanced Computer Systems Reliability, University of California
Santa Cruz, July 1979.

12. Introductory Lecturer and Organizer of 5 Seminars in Reliability for
Department of ME/AERO, Polytechnic, Fall 1979.

13. "Software Reliability Models", Invited Tutorial Lecturer, Annual

Reliability and Maintainability Symposium, Jan. 1979, 1980, 1981.

14. "Research Progress, Software Modeling Studies", Rome Air Development
Center, Dec. 1978, Dec. 1979, Aug. 1980.

15. "Trends in Reliability and Quality Control Education", ASQC Seminar,
Dec. 1979.

16. "Software Engineering-State of the Art," Industry Seminars, Hazeltine
Corp., Greenlawn, N.Y. Spring 1980.

17. "Modern Methods in Electrical Engineering and Computer Science,"
Industry Seminars, PRD Corp. Syosett, N.Y. Fall 1980.

18. "The Information Theoretic Basis of Software Design", Syracuse
University/RADC Workshop, Minnowbrook, Aug. 19-22, 1980.

19. "Software Engineering Models-An Assessment", Electrical Engineering
and Computer Science Seminar, Renssaleaer Polytechnic Institute, Nov.
1980.

H. Ruston

1. "Software Models-Some Applications," Syracuse University/RADC Work-
shop, Minnowbrook, Sept. 1978. -

2. "Research Progress - Software Modeling Studies," Rome Air Development
Center Dec. 1978, Dec. 1979, Aug. 1980.

3. "Structured Design," Polytechnic Industry Seminars, May 1979, N.Y.
City.

67

" - .a-,-I

Talks and Seminars (Cont'd) - H. Ruston

4. "Pascal Programming," Polytechnic Industry Seminars May 1979, N.Y.

City, June 1979, Bethesda, Md., August 1979, Yonkers, N.Y.

5. "Pascal - An Introduction," Industry Seminar, Loral Electronics Systems,
Yonkers, N.Y., Aug. 1979. 0

6. "Software Costs-Reduction and Control," William Patterson College of
N.J., March 1980.

7. "Software Engineering-State of the Art," 6 Industry Seminars, Hazeltine
Corp., Greenlawn, N.Y. Spring 1980.

8. "The Polynomial Measure of Complexity," Seminar, Polytechnic Institute
of N.Y., May 1980.

9. "Geometrical Complexity - A Comparison" Syracuse University/ RADC
Workshop, Minnowbrook, Aug. 19-22, 1980.

10. "Modern Methods in Electrical Engineering and Computer Science," 16
Industry Seminars, PRD Syosett, N.Y., Fall 1980.

11.5 Books

M.L. Shooman:

1. Chapter on "Software Engineering", In Book "Computing System
Reliability," Editor Brian Randell, Cambridge University Press, 1979.

2. "Software Engineering: Design, ileliability, Management," McGraw-Hill
Book Co., 1981.

3. "Electrical Engineering Handbook," J. Wiley and Sons, N.Y. 1981.

H. Ruston

1. "Programming with PL/I," McGraw-Hill Book Co., 1978.

2. "Electrical Engineering Handbook," J. Wiley and Sons, N. Y. 1981.

11.6 Technical Committees

M.L. Shooman

1. Member of Advisory Committee, Reliability Society, 1972-1978.

2. Member of Advisory Committee, Software Engineering Committee,
Computer Society, 1975-Present.

So .,..,' .

.... ~ ~ ~ ~~~~~~. , ... '-" - , , k

Technical Committees (Cont'd) - M.L. Shooman

3. Technical Program Chairman and Session Chairman, IEEE/POLY Workshop
on Quantitative Software Models, Kiamesha Lake, N.Y. Oct. 1979.

4. Invited Attendee, IEEE/NRC Conference on Nuclear Safety, Myrtle
Beach, S.C., Dec. 1979.

5. Member and Acting Administrator, IEEE Standard- 500, The Collection,
Analysis, and Publication of "Electrical, Electronic, and Sensing Com-
ponent Reliability Data for Nuclear-Power Generating Stations",
1976-1978.

6. Member of IEEE Computer Society Software Engineering Standards
Committee, 1976-1979.

7. Member of Long Island Section Fellows and Awards Committee.
1979-Present.

8. Member of IEEE Edison Medal Selection Committee, 1980.

H. Ruston

1. Member of IEEE Committee on PASCAL Standards - 1979-Present.

2. Chairman, IEEE/POLY Workshop on Quantitative Software Models,
Kiamesha Lake, N.Y. Oct. 1979.

11.7 Professional Awards

M.L. Shooman

1. 1977 Annual Reliability Award, "For His Outstanding Contributions To
The Furtherance Of Reliability Education, And For His Pioneering Work
In Software Reliability," Given By The IEEE Reliability Society, Jan.
1978.

2. Elected Fellow Of The IEEE, For "Contributions To The Field Of
Reliability Engineering," Jan. 1979.

12. Personnel and Work Areas

During the course of this two-year study, the following Poly-
technic faculty, staff, and students contributed to the research effort
of this contract:

69
", ~

1978 1979

Principal Investigators 1
Henry Ruston x x
Martin L. Shooman x x

Faculty Investigators
Denis L. Baggi x x i

Aaron Kershenbaum x
Melvin Klerer x
Arthur E. Laemmel x x
Clifford Marshall x
Leonard G. Shaw x

Students
Eli Berlinger x x
A. Gerard Cormier
Linda Hecht x
Garry S. Popkin x x

These individuals worked in the following work areas:

Complexity Measures:
Berlinger, Laemmel, Ruston, Shooman

Test Models and Techniques
Baggi, Laemmel, Marshall, Popkin, Shooman, Shaw

Program Methodology for Low-Error Content
Klerer

Software Reliability Models
Shooman j

Software Management Models
Cormier, Kershenbaum, Cormier

Miscellaneous Topics (Described in Chapter 9)
Berlinger, Hecht, Laemmel, Ruston, Shooman

70

4

4

1~

FIME

DI

amop

